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Abstract—The co-clustering consists in reorganizing a data
matrix into homogeneous blocks by considering simultaneously
the sets of rows and columns. Setting this aim in model-based
clustering, adapted block latent models were proposed for binary
data and co-occurrence matrix. Regarding continuous data,the
latent block model is not appropriated in many cases. As non-
negative matrix factorization, it treats symmetrically the two
sets, and the estimation of associated parameters requiresa
variational approximation. In this paper we focus on continuous
data matrix without restriction to non negative matrix. We
propose a parsimonious mixture model allowing to overcome the
limits of the latent block model.

I. I NTRODUCTION

Let x be a data matrix defined on two setsI (rows, objects,
observations, cases) andJ (columns, variables, attributes), the
co-clustering methods aim to reorganizex into homogeneous
blocks by considering simultaneouslyI and J . Here, we re-
strict to co-clustering methods defined by partitions ofI andJ .
The basic principle of these methods is to make permutations
of rows and columns in order to show block structure on
I×J . Another advantage of co-clustering methods is that they
reducex into a simpler one having the same structure (e.g. a
binary datax is summarized by a binary data). Moreover, far
less computation is required than for processing the two sets
separately and consequently these methods are of interest in
data mining. In this context, the co-clustering has become an
important challenge. For instance, in the text mining field,by
exploiting the duality between rows (documents) and columns
(words), a spectral block clustering method has been proposed
in [6] and a co-clustering based on the mutual information in
[7]. In the analysis of microarray data where data are often
presented as matrices of expression levels of genes under
different conditions, co-clustering of genes and conditions has
permitted to overcome the problem of the choice of similarity
on the two sets found in conventional clustering methods [2].

Different approaches are employed to treat the co-clustering
problem. Among them probabilistic model-based clustering
techniques have shown promising results in several situations.
For instance, the co-clustering of binary and contingency data
has been treated by using latent block Bernoulli and Poisson
models [11], [12].

In this paper we focus on the co-clustering of data matrix
consisting of objects in the rows and continuous variables in
the columns. We set this problem in the model based clustering
context. The latent block model can be extended by using

Gaussian distributions but the symmetric treatment of objects
and variables is often not adapted. The sets of objects and
variables are not comparable. We encounter the same problem
with principal component analysiswhere the objects and the
variables are not treated in a symmetrical way which is not the
case ofcorrespondence analysiswhich treats the rows and the
columns of a co-occurrence matrix in the same way. Note that
in this case, the co-clustering can be formulated as a matrix
approximation problem as in the case of binary data [15] or
in the case of co-occurrence matrix [16]. Different techniques
frequently used, are based on the non-negative factorization
which treats symmetrically the objects and the variables.

The first contribution of this paper is the proposition of
a new mixture model applied on data matrix not necessarily
non-negative and where both setsI and J are not treated
symmetrically. The second contribution is that this model,
thanks to the classification maximum approach, allows to
give an interpretation to a classical criterion. Further we
can propose other criteria. The last contribution is that our
proposed model is parsimonious and adapted to data matrix
when |I| < |J | (|.| denotes the cardinality).

The rest of the paper is organized as follows. Section 2
is devoted to review the problem of co-clustering for binary,
dyadic data matrix and continuous data. In Section 3, we de-
scribe the latent block model and a new parsimonious mixture
models adapted to our co-clustering problem. In Section 4, we
estimate the model parameters by aBlock EM algorithm. In
Section 5, we describe a clustering version. To achieve our
aim we study in Section 6 the behavior of this algorithm.

Notation: A partition of the set of objects intog clusters
is notedz and will be represented by the classification matrix
(zik; i = 1, . . . , n; k = 1, . . . , g) wherezik = 1 if i belongs
to the kth cluster and0 otherwise. A similar notation will
be used for a partitionw of the set of variables intom
clusters represented also by the classification matrix(wj`; j =
1, . . . , d; ` = 1 . . . , m). We denote the cardinalities of thekth
and `th clusters byzk =

∑n

i=1 zik and w` =
∑d

j=1 wj`. To
simplify the notation, the sums and the products relating to
rows, columns or clusters will be subscripted respectivelyby
letters i, j, k or ` without indicating the limits of variation,
which will be implicit. Finally we denote a random variable
by an upper case letter (e.g.,Xij) and the state or value of a
corresponding variable by the same letter, in lower case (e.g.,
xij ).



II. CO-CLUSTERING ALGORITHMS

A. General criterion

For market basket data or document clustering when the
values are binary, the co-clustering becomes a classical ap-
proach. The detection of homogeneous blocks in data matrix
x can be reached by partitioning the rows intog clusters and
the columns intom clusters. Let be the non-negative arbitrary
matricesr = (rik)n×g, c = (rj`)d×m and a = (ak`)g×m

designating respectively row and column memberships and
cluster representation which can be viewed as a summary of
x. The problem is to look for these three matrices minimizing
the total squared residue measure

W (r, c,a) = ||x − rac
T ||2, (1)

where||.|| denote Frobenius matrix norm and the superscript
T denotes matrix transposition. The termracT characterizes
the information ofx that can be described by the cluster
structures. Then the clustering problem can be formulated as
a matrix approximation problem where the clustering aim is
to minimize the approximation error between the original data
x and the reconstructed matrix based on the cluster structures.

The approximation ofx can be solved by an iterative
alternating least-squares optimization procedure. The non-
negative block value decomposition (NBVD) [16] offers a
solution of this problem. Furthermore, whena is identity
matrix, this leads to the cluster model described in [15] and
[17]. Note that both approaches can also be used in the case
of dyadic data matrix such as co-occurrence matrix or when
the values of data are continuous and positives. With these
approaches by assuming thatra is normalized torav, the
cluster labels of the columns, are deduced byv

−1
c

T = (cij);
wj` = 1 if ` = argmax`′=1,...,m cj`′ andwj` = 0 otherwise.
We can also deduce the label cluster rows by working onx

T .

B. Co-clustering for binary data

By imposing some constraints onr, c anda, we can propose
different criteria. For example, ifr andc are two classification
matrices notedz andw anda is a binary data matrix, we can
directly treat the co-clustering problem by minimizing

||x − zaw
T ||2.

Li [15] has proposed an algorithm based on the use of the
doublekmeans principle. The principal steps are

1) Start from an initial position(z(0),w(0),a(0)).
2) Computation of(z(c+1),w(c+1),a(c+1)) starting from

(z(c),w(c),a(c))

a) Updatea(c+ 1
2 ): a

(c+ 1
2 )

k` =
∑

i,j

z
(c)
ik

w
(c)
j`

xij

z
(c)
k

w
(c)
`

b) Updatez
(c+1), eachi belongs to thekth cluster

minimizing
∑

j,` w
(c)
j` (xij − a

(c+ 1
2 )

k` )2.

c) Updatew
(c+1), eachj belongs to thè th cluster

minimizing
∑

i,k z
(c)
ik (xij − a

(c+ 1
2 )

k` )2.

d) Computation ofa(c+1) as in (a) step.

3) Iterate the steps 2 until the convergence.

Obviously the update ofa can be performed before the
update ofw. This strategy appears more profitable because
more faster. Furthermore, it exists an another version [8] more
adapted for large data; it will be described in the case of
continuous data not necessarily non-negative.

C. Continuous data

When the data are continuous, the sum of squared Euclidean
distances can also be used as a measure of the deviation
between the data matricesx andzaw

T .

||x − zaw
T ||2 =

∑

k,`

∑

i|zik=1

∑

j|wj`=1

(xij − ak`)
2, (2)

Different algorithms have been proposed to minimize this
criterion (see for instance, [1], [3]). These algorithms are
equivalent and consist in using the principle of a double
kmeans. Furthermore, we recommend another version called
Croeuc[8] based on the use of reduced intermediate matrices
notedu = (ui`) andv = (vkj) whereui` =

∑

j|wj`=1 xij/w`

and vkj =
∑

i|zik=1 xij/zk. These matrices appear naturally
in the alternated steps. Indeed, the minimization ofW can be
performed by the two following conditional criteria

W (z,a|w) =
∑

k

∑

i|zik=1

w`(ui` − ak`)
2

and
W (w,a|z) =

∑

`

∑

j|wj`=1

zk(vkj − ak`)
2.

These minimizations can be performed by using thek-means
algorithm andCroeuc alternates these minimizations. In the
first one,k-means is applied on then× m matrix u with the
Euclidean distance and the mean values of block clusters. the
second step is carried out by the application ofk-means on
the g × d matrix v with the Euclidean distance and the mean
values of block clusters. One repeats these steps and, at the
convergence, one obtains homogeneous blocks by reorganizing
rows and columns according to the partitionsz andw. Hence,
each blockxk` is characterized byak`.

In fact, most of the algorithmic work on this problem has
been heuristic in nature. The algorithms previously described
might suffer from several problems. First, we can observe that
the criterionW does not depend either on proportions of row
and columns clusters nor of homogeneity degrees of block
clusters. We will see how we can embed the co-clustering
problem in the mixture approach and how we can propose
efficient solutions.

III. M IXTURE MODEL APPROACH

A. Finite mixture model

Finite mixture models underpin a variety of techniques in
major areas of statistics including cluster analysis. Witha mix-
ture model-based approach clustering, it is assumed that the
data to be clustered are generated by a mixture of underlying
probability distributions in which each component represents
a different cluster. Given observationsx = (x1, . . . ,xn), let



ϕ(xi; αk) be the density of an observationxi from the kth
component, where theαk ’s are the corresponding parameters
and letg be the number of components in the mixture. The
probability density function is

f(xi; θ) =

g
∑

k=1

πkϕ(xi; αk),

whereπk is the probability that an observation belongs to the
kth component andθ is the vector of the unknown parameters
(π1, . . . , πg; α1, . . . , αg).

Mixture models [13] may be used in two different ways
to obtain a partition of the initial data. The first, known
as the maximum likelihood (ML) approach, estimates the
parameters of the model and then determines the partitionz by
allocating each row to the class that maximizes the a posteriori
probability using these estimated parameters. The second,the
classification maximum likelihood (CML) approach which
involves creating a partition of the sample such that eachkth
class is made to correspond to a sub-sample respecting the
distribution ϕ(xi; αk). In the ML and CML approaches the
commonly used algorithms are EM [5] and Classification EM
(CEM) [4].

B. Latent block model

Note that the mixture density of the observed datax can be
expressed asf(x, θ) =

∏

i

∑

k πkϕ(xi; αk). This probability
density function can be written as (see for instance [9])

f(x, θ) =
∑

z∈Z

p(z; θ)f(x|z; θ) (3)

whereZ denotes the set of all possible assignments of objects
into g clusters,

p(z; θ) =
∏

i,k

πzik

k andf(x|z; θ) =
∏

i,k

ϕ(xi; αk)zik .

In the context of co-clustering, the formulation (3) can be
extended to propose a latent block model defined by the
following probability density function [9]:

f(x, θ) =
∑

(z,w)∈Z×W

p(z; θ)p(w; θ)f(x|z,w; θ) (4)

whereZ andW denote the sets of all possibles assignments
z of objects andw of variables. In this model we also assume
local independence i.e., then × d random variablesXij are
assumed to be independent oncez andw are fixed; we have

f(x|z,w; θ) =
∏

i,j,k,`

ϕ(xij ; αk)zikwj`

whereϕ(.; αk`) is a probability density function defined on
the real setR. This model allows to propose algorithms for
co-clustering binary and contingency tables by considering
respectively Bernoulli and Poisson latent block models (see
for instance; [11] and [12]). From these works, setting the
clustering problem under the CML approach, we can show
that the co-clustering of co-occurrence matrix by block value
decomposition [16] and the co-clustering of binary data by

[15] are respectively associated to restricted Poisson and
Bernoulli latent block models. The authors have proposed
different variant algorithms of EM based respectively on the
variational approximation of the likelihood and the complete
data likelihood.

For continuous, this model can be easily used by considering
a latent Gaussian block model and the associated algorithms
can be performed. Note that it is easy to show that the
minimization of (2) is associated to Latent block Gaussian
model where the proportions of row clusters and column
clusters are equal and in addition the variances of blocks
are identical. This leads to note the following remarks 1)
the characteristic of the latent block model is that the rows
and the columns are treated symmetrically 2) the estimation
of the parameters requires a variational approximation [10].
To overcome these difficulties, we propose, in the following
section, a new model.

C. A Parsimonious mixture model for co-clustering

Hereafter, we propose to use the classical mixture model
in which the partitionw of the variables is considered as a
parameter of the model. The pdf is then

f(xi; θ) =
∑

k

πkϕ(xi;w, α)

with

ϕ(xi;w, α) =
∏

j,`

(

1
√

2πσ2
k`

e
− 1

2σ2
k`

(xij−ak`)
2

)wj`

.

The unknown parameterθ is formed now byw, α andπ =
(π1, . . . , πg). The parameterα = (a, Σ) wherea and Σ are
g × m matrices representing the means and the variances of
blocks

a =







a11 . . . a1m

...
. . .

...
ag1 . . . agm






, Σ =







σ2
11 . . . σ2

1m

...
. . .

...
σ2

g1 . . . σ2
gm






.

This model can be viewed as a Gaussian mixture model with
constraints on theg mean vectors andg variance matrices. For
each componentk, the(p×1) mean vectorak takes this form

(ak1, . . . , ak1, ak2, . . . , ak2, . . . , akm, . . . , akm)T ,

where eachak` is repeatedw` times. In the same manner, the
variance matrixΣk is a diagonal(p × p) matrix defined by

Diag(σ2
k1, . . . , σ

2
k1, σ

2
k2, . . . , σ

2
k2, . . . , σ

2
km, . . . , σ2

km),

where each varianceσ2
k` is repeatedw` times. When for

each componentk the variances are assumed equal toσ2
k,

Σk becomesσ2
kI. This model is parsimonious as opposed to

spherical Gaussian mixture model. The number of parameters
is equal tog+2(g×m) instead ofg+2(g×d). Hence, it is more
adapted whenn << d, a classical situation in bioinformatics.
If all the variances are assumed equal toσ2, Σk becomesσ2I.



IV. B LOCK EM ALGORITHM

Setting our model under the Maximum Likelihood (ML)
approach, we propose to use the EM algorithm to estimate the
parameters. The log-likelihood of observed data is

L(θ) = log f(x; θ) =
∑

i

log
∑

k

πkϕk(xi;w, α)

and, the complete data log-likelihoodLc(z; θ) is
∑

i,k zik log (πkϕk(xi;w, α)) . It takes, up to the constant
−nd

2 log 2π, the following form:

∑

k

zk log πk −
1

2

∑

i,j,k,`

zikwj`

(

log σ2
k` +

(xij − ak`)
2

σ2
k`

)

.

We can extend this complete data log-likelihoodLc,
defined on a partitionz, to the fuzzy partition associated to
s = (sik; i = 1, . . . , n; k = 1, . . . , g) the classification matrix
defined by the conditional probabilities. The expression of
Lc(s; θ) is equal to

∑

k

sk log πk −
∑

i,j,k,`

sikwj`

2

(

log σ2
k` +

(xij − ak`)
2

σ2
k`

)

,

wheresk =
∑

i sik.
Starting fromθ

(0), the EM algorithm alternates the follow-
ing steps.

A. Estimation step

This step reduces to the computation of the condi-
tional probabilities. Each probabilitys(c)

ik is proportional to
π

(c)
k ϕk(xi;w

(c), α(c)) where the logarithm takes this form

log πk −
1

2

∑

`

(

w` log σ2
k` +

(ei` + w`(ui` − ak`)
2)

σ2
k`

)

with ui` =
∑

j
wj`xij

w`
andei` =

∑

j wj`(xij − ui`)
2.

B. Maximization step

The maximization ofQ(θ, θ(c)) is not straightforward.
We can use the Generalized EM algorithm (GEM) for
which the M-step requiresθ(c+1) to be chosen such that
Q(θ(c+1), θ(c)) ≥ Q(θ(c), θ(c)): that is, one choosesθ(c+1)

to increase the functionQ(θ, θ(c)) rather than maximize it
over all θ. Note thatQ(θ, θ(c)) is the fuzzy complete data
log-likelihood

Lc(s
(c); θ) =

∑

k

s
(c)
k log πk −

1

2
H(w, α) with

H(w, α) =
∑

i,j,k,`

s
(c)
ik wj`(log σ2

k` +
(xij − ak`)

2

σ2
k`

).

The maximization of
∑

k s
(c)
k log πk leads toπ

(c+1)
k =

s
(c)
k

n

and to decreaseH(w, α) we propose the following alternated
minimizations.

1) Computation ofw givenα: This step consists in mini-
mizing H(w, α) w.r. to w. The expression ofH(w(c+1), α)

can be written as
∑

j,` w
(c+1)
j` T

(c)
j` where

T
(c)
j` =

∑

k

(s
(c)
k log σ2

k` +
1

σ2
k`

(

fkj + sk(vkj − ak`)
2
)

)

with vkj =
∑

i
sikxij

sk
and fkj =

∑

i sik(xij − vkj)
2. This

leads to the partitionw(c+1) defined byw(c+1)
j` equal to 1 if

` = argmin`=1,...,m T
(c)
j` and0 otherwise.

2) Computation ofα givenw: This step consists in min-
imizing H w.r. to α given w

(c+1). Using thekth component
and the`th cluster, the expression to minimize is

s
(c)
k w

(c+1)
` log σ2

k` +
∑

i,j

s
(c)
ik w

(c+1)
j`

(xij − ak`)
2

σ2
k`

.

It leads to

a
(c+1)
k` =

∑

ij s
(c)
ik w

(c+1)
j` xij

s
(c)
k w

(c+1)
`

,

and

(σ2
k`)

(c+1) =

∑

i,j s
(c)
ik w

(c+1)
j` (xij − ak`)

2

s
(c)
k w

(c+1)
`

.

Using the termsvkj and fkj previously defined, the center
and the variance of each block take respectively the following
forms

∑

j w
(c)
j` vkj

s
(c)
k w

(c)
`

and
∑

j w
(c+1)
j`

(

fkj + s
(c)
k (vkj − ak`)

2
)

s
(c)
k w

(c+1)
`

.

Note that, in the M-step, computational shortcuts are per-
formed on a reduced matrix using sufficient statisticsvkj and
fkj and therefore it is suitable for large data sets.

C. Properties of Block EM

This GEM algorithm will be called in the following Block
EM algorithm (BEM). Let us recall that GEM has the same
convergence properties that EM and, like EM, is known to
converge slowly in some situations. The second important
drawback of these kind of algorithms is that their solutions
can highly depend on its starting position and consequently
produce sub-optimal maximum likelihood estimates. To act
against this high dependency on its initial position, we propose
to use the ”em-EM” strategy which consists in several short
runs of BEM from random positions followed by a long run
of BEM from the solution maximizing the likelihood.



V. BLOCK CEM ALGORITHM

Regarding the context of clustering with the ML approach,
after we estimate parameterθ, we can give a probabilistic
clustering of then objects in term of their fitted posterior
probabilities of component membershipsik obtained at the end
of EM. Then, we can obtain a partition by using classification
step which assigns each object to the component of the
mixture to which it has the highest posterior of probabilityof
belonging. With the optimalw partition, we obtain therefore
a co-clustering where a partition of objects is characterized by
a partition of variables. The BEM algorithm can be viewed as
a soft algorithm to cluster simultaneously the set of objects
and the set of variables.

A hard version called, Classification BEM, can be per-
formed by replacing L(θ) by Lc(z,w; θ). The main modifica-
tions concern the conditional maximization of complete data
log-likelihoods w.r. tow givenz andθ and w.r. toθ given z

andw. This leads to convert the posterior probabilitiessik ’s to
a discrete classification (z

(c)
ik = 1 if k = argmaxk′=1,...,g s

(c)
ik′

and z
(c)
ik = 0 otherwise) in a C-step before performing the

M-step based this time on the clusters.
From these models we can impose that the proportions

are equal and all blocks have the same variance. Then the
complete data log-likelihood is equal to

−n log g −
nd

2
log σ2 −

1

2σ2
||x − zaw

T ||2

then the maximization ofLc and the minimization of (2) are
equivalent. We have a signification of criterion optimized by
Croeuc: the proportions are supposed equal and the variances
for all the blocks are the same. Moreover,Croeucappears as
a particular hard version of BEM.

VI. N UMERICAL EXPERIMENTS

In these first experiments, we consider the model where
all blocks have the same variance and the proportions of
clusters are equal. We have chosen this restriction in order
to evaluate the different algorithms in the same condition.
Firstly, to demonstrate the advantage of BEM, we compared
its performances with classical EM on the diagonal Gaussian
model ignoring the clustering of variables. Secondly, we
evaluate BEM when number of columns is higher that the
rows. Thirdly, from data matrices non-negative, we study the
performances of BEM versus the non-negative block decom-
position (NBVD) in clustering context.

A. BEM versus Croeuc and EM

To illustrate the behavior of BEM, we selected a1000× 50
data arising from3×2-component mixture model correspond-
ing to three degrees of overlap of the clusters: well separated,
moderately separated and poorly separated. The concept of
cluster separation is difficult to visualize easily for our model,
but the degree of overlap can be measured by the true error
rate approximated by comparing the partitions simulated with
those we obtained by applying a classification step. From our

numerical experiments, we present only 3 situations corre-
sponding to 3 levels of overlap degrees: M1 for clusters well
separated (8.6%), M2 for moderately separated (16%) and M3
for poorly separated (24.8%). To compare two partitionsz and
z
′ having the same number of clusters, the error rate or the

proportions of misclassified objects is notedδ(z, z′). It can
be defined as follows: IfC is the confusion matrix between
the two partitions, relabel the components of the partitionz

′

such that the trace of matrixC is maximal (to obtain this
maximum value in our experiments, we enumerate all possible
relabellings), then computeδ(z, z′) = 1 − 1

n

∑

i,k zikz′ik.
In Table I, we compared the performances of BEM, EM and

Croeucby usingδ(z, z′) (in percent) and their execution times
recorded from the same initial positions. It appears clearly
that BEM outperforms EM andCroeuc. In the other hands,
BEM is more faster than EM, the rate timeEM/timeBEM
notedtEM/tBEM is higher than two. Different Monte Carlo
simulations were performed confirming these remarks and also
the superiority of BEM as compared to EM andCroeuc.

TABLE I
COMPARISON RESULTS BETWEENBEM, EM AND Croeuc

(n × d = 1000 × 50)

Error (%) Situ. BEM EM Croeuc tEM

tBEM

M1 8.5 8.6 8.5 2.01
δ(z, z′) M2 16.0 21.6 18.1 2.66

M3 19.6 35.6 24 2.16

B. Effect of the size of data

Now we illustrate the interest of our approach whenn < d,
crucial situation in bioinformatics. As our model is parsimo-
nious, it does not suffer of this situation and therefore offers
a good alternative in order to cluster objects. The Table II,
displays the degree of overlap and the error ratesδ(z, z′) for
different sizes ofn. We note incontestably that whenn < d,
BEM is always the best even if this superiority decreases
naturally whenn > d.

TABLE II
BEM VS EM WHEN n < d = 400

n 20 30 40 400
degree of

overlap (%) 5 13 15 14
BEM 5 13 17 14

δ(z, z′) EM 35 26 30 19

C. BEM versus NBVD

In this paragraph, we simulated1500 × 1000 non-negative
data arising from3 × 3-component mixture model with two
degree of overlap (data1 and Data2). We have performed
different experiences with NBVD et we remarked that, even
it leads good approximations (not reported here), it has diffi-
culties to give good partitions. As this weakness is due to the
initialization of NBVD by arbitrary matricesr, a and c, we
propose to initialize NBVD by the results of BEM. In other



words,r, a andc are initialized byz (NBVD1) or s (NBVD2),
a andw obtained by BEM.

The results of different data sets with different degree
overlap are reported in respectively to the initializationof r

by z or by s. In Tables III, IV are reported confusion matrices
(conf.rows for rows and conf.columns for columns) from the
original data Data1 and Data2, and those obtained by NBVD.
In clustering context, the initialization of NBVD by BEM
appears more interesting for NBVD and in this case, it is
slightly advantageous to initializer by z. However, we note
that NBVD does not seem improving the obtained clustering
by BEM. Hence, when the aim is co-clustering, BEM appears
sufficient.

From BEM, we can define two criteria||x − zaw
T ||2 and

||x − saw
T ||2. The criteria in NBVD are improved in both

cases (see Tables V and VI); we have a better approximation
whenr is initialized bys.

TABLE III
NBVD VS BEM FOR DATA 1

Algo. conf.rows conf.columns

BEM





509 0 0
0 478 4
0 14 495









317 0 0
0 343 0
0 0 340





NBVD1





509 0 0
0 478 4
0 14 495









317 0 0
0 343 0
0 0 340





NBVD2





509 0 0
0 475 10
0 17 489









317 0 0
0 343 0
0 0 340





TABLE IV
NBVD VS BEM FOR DATA 2

Algo. conf.rows conf.columns

BEM





492 1 16
1 460 0
22 0 488









344 0 0
0 331 0
0 5 320





NBVD1





492 1 16
1 460 0
22 0 488









344 0 0
0 331 0
0 5 320





NBVD2





492 0 17
3 461 1
20 0 486









344 0 0
0 331 0
0 5 320





TABLE V
NBVD VS BEM FOR DATA 1

Algo. ||x− zaw
T ||2 ||x− saw

T ||2

BEM 3.0015e+07 3.0010e+07
NBVD 2.9965e+07 2.9957e+07

VII. C ONCLUSION

For co-clustering continuous data, we have proposed a new
parsimonious mixture model. Contrary to latent block model
requiring a variational approximation for binary data and co-
occurrence data matrix, the proposed algorithm estimatingthe

TABLE VI
NBVD VS BEM FOR DATA 2

Algo. ||x− zaw
T ||2 ||x− saw

T ||2

BEM 4.5029e+07 4.5019e+07
NBVD 4.4957e+07 4.4936e+07

parameters of our model is a Generalized EM. It appears
efficient and suitable for high-dimensional data.

In hard clustering context: 1) we have given a sense of
the criterion commonly used 2) we have proposed a general
criterion taking into account the proportions of clusters and
the variances of each block 3) we have shown thatCroeucor
equivalent algorithms are hard versions of BEM and finally
we have shown that even if the approximation of data non-
negative is interesting with NBVD, its use without appropri-
ated initializations cannot give good co-clustering.
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