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Abstract—The co-clustering consists in reorganizing a data Gaussian distributions but the symmetric treatment of aibje
matrix into homogeneous blocks by considering simultanealy and variables is often not adapted. The sets of objects and
the sets of rows and columns. Setting this aim in model-based \ 5 iaples are not comparable. We encounter the same problem
clustering, adapted block latent models were proposed foribary . o . .
data and co-occurrence matrix. Regarding continuous datathe W'th principal componenF analysrwher_e the objec_ts a_nd the
latent block model is not appropriated in many cases. As non- Variables are not treated in a symmetrical way which is net th
negative matrix factorization, it treats symmetrically the two case ofcorrespondence analysighich treats the rows and the
sets, and the estimation of associated parameters requires columns of a co-occurrence matrix in the same way. Note that
variational approximation. In this paper we focus on contiruous in this case, the co-clustering can be formulated as a matrix

data matrix without restriction to non negative matrix. We imati bl in th f bi data 115
propose a parsimonious mixture model allowing to overcomehie  2PProximation probiem as in the case of binary data [15] or

limits of the latent block model. in the case of co-occurrence matrix [16]. Different teclueis)
frequently used, are based on the non-negative factarizati
. INTRODUCTION which treats symmetrically the objects and the variables.

Let x be a data matrix defined on two sétgrows, objects,  The first contribution of this paper is the proposition of
observations, cases) add(columns, variables, attributes), thea new mixture model applied on data matrix not necessarily
co-clustering methods aim to reorganizento homogeneous non-negative and where both setsand J are not treated
blocks by considering simultaneouslyand J. Here, we re- symmetrically. The second contribution is that this model,
strict to co-clustering methods defined by partitiong ahd.J. thanks to the classification maximum approach, allows to
The basic principle of these methods is to make permutatiagisge an interpretation to a classical criterion. Further we
of rows and columns in order to show block structure ocan propose other criteria. The last contribution is that ou
I x J. Another advantage of co-clustering methods is that th@yoposed model is parsimonious and adapted to data matrix
reducex into a simpler one having the same structure (e.g.véhen|I| < |J| (|.| denotes the cardinality).
binary datax is summarized by a binary data). Moreover, far The rest of the paper is organized as follows. Section 2
less computation is required than for processing the twe sét devoted to review the problem of co-clustering for binary
separately and consequently these methods are of interestlyiadic data matrix and continuous data. In Section 3, we de-
data mining. In this context, the co-clustering has become scribe the latent block model and a new parsimonious mixture
important challenge. For instance, in the text mining fiblgd, models adapted to our co-clustering problem. In Sectione4, w
exploiting the duality between rows (documents) and colsimestimate the model parameters bck EM algorithm. In
(words), a spectral block clustering method has been pesposSection 5, we describe a clustering version. To achieve our
in [6] and a co-clustering based on the mutual information @mm we study in Section 6 the behavior of this algorithm.

[7]. In the analysis of microarray data where data are often Notation: A partition of the set of objects intg clusters
presented as matrices of expression levels of genes unidemotedz and will be represented by the classification matrix
different conditions, co-clustering of genes and condiibas (zy;i = 1,...,n;k = 1,...,9) wherez;;, = 1 if ¢ belongs
permitted to overcome the problem of the choice of simyaritto the kth cluster and0 otherwise. A similar notation will
on the two sets found in conventional clustering methods [2]je used for a partitionw of the set of variables inton

Different approaches are employed to treat the co-clumgericlusters represented also by the classification méiwix; j =
problem. Among them probabilistic model-based clustering...,d;¢ =1...,m). We denote the cardinalities of theh
techniques have shown promising results in several sitasiti and ¢th clusters byz, = > | 2z, andw, = ijl wjg. TO
For instance, the co-clustering of binary and contingerata d simplify the notation, the sums and the products relating to
has been treated by using latent block Bernoulli and Poissmws, columns or clusters will be subscripted respectiimly
models [11], [12]. lettersi, j, k or ¢ without indicating the limits of variation,

In this paper we focus on the co-clustering of data matrixhich will be implicit. Finally we denote a random variable
consisting of objects in the rows and continuous variahtes by an upper case letter (e.g{;;) and the state or value of a
the columns. We set this problem in the model based clustericorresponding variable by the same letter, in lower case,(e.
context. The latent block model can be extended by using;).



[I. CO-CLUSTERING ALGORITHMS Obviously the update oh can be performed before the
A. General criterion update ofw. This strategy appears more profitable because

more faster. Furthermore, it exists an another version [&em

For market basket data or document clustering when g, eq for large data; it will be described in the case of
values are binary, the co-clustering becomes a classical aghtinuous data not necessarily non-negative.

proach. The detection of homogeneous blocks in data matrix
x can be reached by partitioning the rows igte@lusters and C. Continuous data

the columns inton clusters. Let be the non-negative arbitrary \yhen the data are continuous, the sum of squared Euclidean

mat.rices.r = (Tik)nx.g’ ¢ = (rje)axm anda = (akf)gX_m distances can also be used as a measure of the deviation
designating respectively row and column memberships agdiyeen the data matricesand zaw? .

cluster representation which can be viewed as a summary of

x. The problem is to look for these three matrices minimizing  [jx — zaw” [ =" >~ > (zi; — an)?, )
the total squared residue measure k.l ilzi=1 jlwje=1
W(r,c,a) = |[x — rac” |, (1) Different algorithms have been proposed to minimize this

criterion (see for instance, [1], [3]). These algorithme ar
where||.|| denote Frobenius matrix norm and the superscrigjuivalent and consist in using the principle of a double
T denotes matrix transposition. The temac” characterizes gmeans. Furthermore, we recommend another version called
the information ofx that can be described by the clusteCroeuc[8] based on the use of reduced intermediate matrices
structures. Then the clustering problem can be formulased gotedu = (u;,) andv = (vk;) Whereu;, = Zj\w-gzl ;) we
a matrix approximation problem where the clustering aim igndv,; = > ijzn—1 Tij/ 2k These matrices'apjpear naturally

to minimize the approximation error between the origindbdajn the alternated steps. Indeed, the minimizatioéfcan be
x and the reconstructed matrix based on the cluster strisctuligerformed by the two following conditional criteria

The approximation ofx can be solved by an iterative

alternating least-squares optimization procedure. The- no W(z,alw)=> > wi(ui — ar)’
negative block value decomposition (NBVD) [16] offers a k ilzig=1

solution of this problem. Furthermore, whenis identity 5nq

matrix, this leads to the cluster model described in [15] and W (w,a|z) = Z Z 2 (vk — ane)?.

[17]. Note that both approaches can also be used in the case
of dyadic data matrix such as co-occurrence matrix or when o _
the values of data are continuous and positives. With thekgese minimizations can be performed by using thmeans

approaches by assuming thed is normalized torav, the algorithm andCroeucalternates these minimizations. In the

cluster labels of the columns, are deducedvb)}cT — (C’Lj)l first one,k-means is applled on the x m matrix u with the

wje = 1if £ = argmax,_, . c;o andw;; = 0 otherwise. Euclidean distance and the mean values of block clustegs. th

We can also deduce the label cluster rows by workingedn Second step is carried out by the applicationkefneans on
the g x d matrix v with the Euclidean distance and the mean

B. Co-clustering for binary data values of block clusters. One repeats these steps and, at the

By imposing some constraints efic anda, we can propose Convergence, one obtains homogeneous blocks by reorggnizi
different criteria. For example, if andc are two classification rows and columns according to the partitienandw. Hence,
matrices notea andw anda is a binary data matrix, we can€ach blockx;, is characterized by

direcﬂy treat the Co-c|ustering pr0b|em by m|n|m|z|ng In faCt, most of the algorithmic work on this prOblem has
been heuristic in nature. The algorithms previously déscti

might suffer from several problems. First, we can obserag¢ th
Hée criterionW does not depend either on proportions of row
and columns clusters nor of homogeneity degrees of block
clusters. We will see how we can embed the co-clustering
problem in the mixture approach and how we can propose
efficient solutions.

£ jlwje=1

||x — zaw? ||%.
Li [15] has proposed an algorithm based on the use of t
doublekmeans principle. The principal steps are
1) Start from an initial positior{z(®), w(® a(®)),
2) Computation of(z(ct1), w(ct1) alc+1)) starting from
(Z(c), wie), a(c))

1 )i I11. MIXTURE MODEL APPROACH
a) Updatea(“+3): a}(jrz) =2 S
TRk W A. Finite mixture model
b) Updatez(t!), eachi belongs to thekth cluster o _ _ , ,
1
minimizing Zjéng) (wij — ag;“))?. Finite mixture models underpin a variety of techniques in

; . major areas of statistics including cluster analysis. V&ithix-
©) Upo.lat.ex.v(‘:“), eatg)hj be'”}?ff)o thetth cluster turé model-based approach clugtering, it is z):\/ssumed teat th
minimizing 3°; 5, 2, (w35 — ay, *)*. data to be clustered are generated by a mixture of underlying
d) Computation ok(“™) as in (a) step. probability distributions in which each component represe
3) lterate the steps 2 until the convergence. a different cluster. Given observatioss= (x1,...,X,), let



o(x;; ar) be the density of an observation from the kth [15] are respectively associated to restricted Poisson and
component, where the;’'s are the corresponding parameterBernoulli latent block models. The authors have proposed
and letg be the number of components in the mixture. Theifferent variant algorithms of EM based respectively oa th

probability density function is variational approximation of the likelihood and the contple
g data likelihood.
f(xi;0) = Z (X ), For continuous, this model can be easily used by considering
=1 a latent Gaussian block model and the associated algorithms

wherer, is the probability that an observation belongs to thg2n be performed. Note that it is easy to show that the
kth component and is the vector of the unknown parameterén'”'m'zat'on of (2) is associated to Latent block Gaussian
(T1ye e g3 0Ly ey ). model where the proportions of row clusters and column

l\/’lixtu’réq’moéels’[lg] may be used in two different wayS'usters are equal and in addition the variances of blocks
to obtain a partition of the initial data. The first, knowrfi® identical. This leads to note the following remarks 1)

as the maximum likelihood (ML) approach, estimates tHBe characteristic of the latent block model is that the rows
parameters of the model and then determines the partitign and the columns are treated symmetrically 2) the estimation

allocating each row to the class that maximizes the a pasteri©f the parameters requires a variational approximatior). [10
probability using these estimated parameters. The se¢bad, 10 overcome these difficulties, we propose, in the following
classification maximum likelihood (CML) approach whictS€ction, & new model.

involves creating a partition of the sample such that &abh . . . ,

class is made to correspond to a sub-sample respecting %eA Parsimonious mixture model for co-clustering
distribution ¢ (x;; o). In the ML and CML approaches the Hereafter, we propose to use the classical mixture model
commonly used algorithms are EM [5] and Classification ENM which the partitionw of the variables is considered as a

(CEM) [4]. parameter of the model. The pdf is then
B. Latent block model f(xi;0) = Zﬁksﬁ(xi;W Q)
Note that the mixture density of the observed datzan be k
expressed ag(x, 0) = [[, >, mre(x:; au). This probability with
density function can be written as (see for instance [9])
Wie
1 — =L (zij—are)?
F(x,0) =" p(z0)f(x|z0) 3) P(xi; W, ) = (*e 27k ) :
z€Z g \% 27‘—0%5
yvhereZ denotes the set of all possible assignments of objeqtﬁe unknown parametet is formed now byw, o and —
into g clusters, (m1,...,mg). The parametetx = (a, ¥) wherea and X are
p(z:0) = szm and f(x|z; 0) = H(p(xi; a)**. g x m matrices representing the means and the variances of
ik ik blocks

In the context of co-clustering, the formulation (3) can be air ... Qim oty e Ol
extended to propose a latent block model defined by the, — : . : Y= : . :
following probability density function [9]: ' o 2 9

Qg1 --- Ggm Ogi -+ Ogm

f(x,0) = Z p(z; 0)p(w; 0) f (x|2, w; 6) ) This model can be viewed as a Gaussian mixture model with
(z.w)eZxW constraints on the mean vectors ang variance matrices. For
where Z and W denote the sets of all possibles assignmengsich componerk, the (p x 1) mean vectog,, takes this form
z of objects andw of variables. In this model we also assume .
local independence i.e., the x d random variablesX;; are (ks -5 Qr1, Qk2, - oo Qk2, - Qs - - -, Qkm)

assumed to be independent oncandw are fixed; we have where eachuy, is repeatedy, times. In the same manner, the

f(x|z,w:; 0) = H O(xi5; o )7k i variance matrixXy, is a diagonalp x p) matrix defined by
3.kt - 2 2 2 2 2 2
where ¢(.; ax) is a probability density function defined on Diag(©ic, -0k Oka- - Ohzs - Ol - Tkom )
the real sefR. This model allows to propose algorithms fowhere each variance?, is repeatedw, times. When for
co-clustering binary and contingency tables by considerieach component the variances are assumed equaloty
respectively Bernoulli and Poisson latent block model® (s&; becomessiI. This model is parsimonious as opposed to
for instance; [11] and [12]). From these works, setting th&pherical Gaussian mixture model. The number of parameters
clustering problem under the CML approach, we can shawequal tog+2(gxm) instead ofy+2(gxd). Hence, it is more
that the co-clustering of co-occurrence matrix by blockueal adapted whem << d, a classical situation in bioinformatics.
decomposition [16] and the co-clustering of binary data by all the variances are assumed equabto X;, becomesr?1.



IV. BLOCK EM ALGORITHM 1) Computation ofw givena: This step consists in mini-

i c+1
Setting our model under the Maximum Likelihood (ML)MiZiNG H(w, &) w.r. to “;r;l;he expression off (w(“*!), a)
approach, we propose to use the EM algorithm to estimate §f be written a_; , w T ! where
parameters. The log-likelihood of observed data is © © 1
T, = ogoi, + — (fu; + — ag)?
L(0) = log f(x;0) Zlongm (xi;w, ) 7 ;(Sk B oM T (g sl = axe)’))
and, the complete data log-likelihoodL.(z;0) is With vy = 287:“ and fr; = >, sik(xij — vi;)®. This
Zl 5 Zib log (mrr(xi; w, ) . It takes, up to the constantieads to the partltlorw (¢+1) defined byw(c+1) equal to 1 if

2 log 2, the following form: (= argmin,_, _, T\, and0 otherwise.
1 (.CCZ — akg)2
sz log ), — 5 Z ZikWje (10g01%e + JT : 2) Computation ofx givenw: This step consists in min-
k irjiknt ke imizing H w.r. to o given w(¢t1), Using thekth component

We can extend this complete data log-likelihoal,, and thefth cluster, the expression to minimize is
defined on a partitiorr, to the fuzzy partition associated to

s=(si;i=1,...,n;k =1,...,g) the classification matrix (@1 — ane)?
defined by the conditional probabilities. The expression of  s'“w(“""log o2, +Zs(c) (e+1) 124 —Ot)
L.(s; 0) is equal to i ke
SikWje o (mij — ape)? It leads to
sk log m,, — —_ <1ogcr,€é + —, < c+1) 3
zk: zgzke 2 The Qlet) — 2oij Sik W Lij
’ e T T @, <c+1> ’
wheres, = 3", sik. k
Starting fromo®), the EM algorithm alternates the follow-and
. ' c c+1) 2
e e - Zas 0™ @ - an)
A. Estimation step s\t

This step reduces to the computatlon of the COndUsmg the termsv; and fi; previously defined, the center

tional probabilities. Each probab|l|ty ir 1S proportional 10 54 the variance of each block take respectively the fotigwi
791 (xs; W, o)) where the logarithm takes this form  forms

(¢)
1 o (e +we(uie — ake)?) > Wi Vkj
log m1, — 3 Z (wg log oj;p + =) W
‘ kW
with w;p = W ande;, = Zj wjg(xij — uig)Q. and

35wl (Fis + 50 0 — on0)?)

B. Maximization step
S(c)wécﬂ)

The maximization ofQ(#,0'°)) is not straightforward. k
We can use the Generalized EM algorithm (GEM) for
which the M-step requirezﬁ(‘:“) to be chosen such that
QO 09)) > Q(89,0(9)): that is, one chooses“+1)
to increase the functio)(6,8”)) rather than maximize it
over all 6. Note thatQ(6,6'°)) is the fuzzy complete data
log-likelihood

Note that, in the M-step, computational shortcuts are per-
formed on a reduced matrix using sufficient statistigs and
fr; and therefore it is suitable for large data sets.

C. Properties of Block EM

1 This GEM algorithm will be called in the following Block
L.(s'“);0) ZS log . — §H(W,a) with EM algorithm (BEM). Let us recall that GEM has the same
convergence properties that EM and, like EM, is known to
converge slowly in some situations. The second important

(zij — axe)? : . . . .
——). drawback of these kind of algorithms is that their solutions

H(w,a) = Z sgz)wﬂ(loga,zz—i- 3

1,4,k 0 ke can highly depend on its starting position and consequently
o produce sub-optimal maximum likelihood estimates. To act
The maximization ofy_, s ‘) logm, leads tOW(CH) == against this high dependency on its initial position, wepose
and to decreas#l (w, «) we propose the foIIowmg alternatedto use the "em-EM” strategy which consists in several short
minimizations. runs of BEM from random positions followed by a long run

of BEM from the solution maximizing the likelihood.



V. BLoCK CEM ALGORITHM numerical experiments, we present only 3 situations corre-
r§ponding to 3 levels of overlap degrees: M1 for clusters well
Separated6%), M2 for moderately separatedd%) and M3
for poorly separated2¢.8%). To compare two partitions and
7' having the same number of clusters, the error rate or the
a‘roportions of misclassified objects is notétk,z’). It can

Regarding the context of clustering with the ML approac
after we estimate parameté; we can give a probabilistic
clustering of then objects in term of their fitted posterior
probabilities of component membership obtained at the end
of EM. Then, we can obtain a partition by using classificatio . i ) ; .
step which assigns each object to the component of t defined as follows: ItV is the confusion matrix betvy_een
mixture to which it has the highest posterior of probabibfy the two partitions, relabel thg cpmpongnts of the p‘?‘”‘“‘?”
belonging. With the optimaW partition, we obtain therefore SUCh_ that the trf’;lce of matr_lx'] is maximal (to obtain th|s_

a co-clustering where a partition of objects is characeeriay maximum value in our experiments, we enumerate all possible

H n 1 _ 1 ot
a partition of variables. The BEM algorithm can be viewed a{gllab_?lllbl}gsl), then compudﬁi(ﬁ, z') " 1-5 Zikazé’“ém‘ EM and
a soft algorithm to cluster simultaneously the set of olsjec h fable |, we compared the performances o ' an

, N ; T
and the set of variables. roel:jct:jy fusmgfrsz,z ) (in pe_r;:elnt) aptq thelrltexecutlon tlmesI
A hard version called, Classification BEM, can be pelr_ecor ed from the same initial positions. It appears clear

formed by replacing L{) by L.(z, w;8). The main modifica- thé‘KAB.EM outp?rfotrmsthEM Er;ﬂd:r?ﬁuc I? t?.e Oéh&;t.hangéivl
tions concern the conditional maximization of completeadaFS IS more Taster than » (n€ rate time ime
log-likelihoods w.r. tow givenz and@ and w.r. tof givenz notedt EM /tBEM is higher than two. Different Monte Carlo
andw. This leads to convert the posterior probabilitiggs to simulations were performed confirming these remarks arwd als

2 discrete classificationzz?,j) = 1if k= argmax,_, ng) the superiority of BEM as compared to EM afidoeuc

and zf,? = 0 otherwise) in a C-step before performing the TABLE |
M-step based this time on the clusters. COMPARISON RESULTS BETWEENBEM, EM AND Croeuc
) . d = 1000 x 50
From these models we can impose that the proportions (nx X 50)

are equal and all blocks have the same variance. Then the g5 @) [ Si. BEM EM  Croeuc 2o
. tBE

complete data log-likelihood is equal to M1 85 86 85 2.01

5(z,2) | M2 160 216 18.1 2.66

nd 9 T2 M3 196 35.6 24 2.16
—nlogg—gloga - [|x — zaw" ||

202
then the maximization of.. and the minimization of (2) are g Effect of the size of data

equivalent. We have a signification of criterion optimized b , .

Croeuc the proportions are supposed equal and the varianced\OW We illustrate the interest of our approach wher: d,

for all the blocks are the same. Moreoverpeucappears as crucial situation in bioinformatics. As our model is parsim
a particular hard version of BEM nious, it does not suffer of this situation and thereforeisff

a good alternative in order to cluster objects. The Table II,
VI. NUMERICAL EXPERIMENTS displays the degree of overlap and the error ratesz’) for
different sizes ofn. We note incontestably that when< d,

"Inblthise J'rSt e>r<]per|ments, we conS|dder ;he modellwhe M is always the best even if this superiority decreases
all blocks have the same variance and the proporuons(;g}(;rturaIIy whenn > d.

clusters are equal. We have chosen this restriction in or

to evaluate the different algorithms in the same condition. TABLE II
Firstly, to demonstrate the advantage of BEM, we compared BEM VS EM WHEN 7 < d = 400
its performances with classical EM on the diagonal Gaussian

. . : . n 20 30 40 400
model ignoring the clustering of variables. Secondly, we degree of
evaluate BEM when number of columns is higher that the overlap %) 5 13 15 14
rows. Thirdly, from data matrices non-negative, we study th BEM 5 13 1r 14

5(z,2) EM 35 26 30 19

performances of BEM versus the non-negative block decom-
position (NBVD) in clustering context.

A. BEM versus Croeuc and EM C. BEM versus NBVD

To illustrate the behavior of BEM, we selected @0 x 50 In this paragraph, we simulatdd00 x 1000 non-negative
data arising fron8 x 2-component mixture model correspondédata arising from3 x 3-component mixture model with two
ing to three degrees of overlap of the clusters: well sepdratdegree of overlap (datal and Data2). We have performed
moderately separated and poorly separated. The conceptifferent experiences with NBVD et we remarked that, even
cluster separation is difficult to visualize easily for ouodel, it leads good approximations (not reported here), it haf- dif
but the degree of overlap can be measured by the true ermalties to give good partitions. As this weakness is due ¢o th
rate approximated by comparing the partitions simulatetth wiinitialization of NBVD by arbitrary matrices, a andc, we
those we obtained by applying a classification step. From guiopose to initialize NBVD by the results of BEM. In other



TABLE VI

words,r, a andc are initialized byz (NBVD1) ors (NBVD2), NBVD vs BEM FOR DATA 2

a andw obtained by BEM.

The results of different data sets with different degree g'g:\)ﬂ- ||>Z EOZZZWTO“72 ||X4—55031VE;/TIg7
: : e s . e+ . e+
overlap are reported in respectively to the initializatiminr NBVD 449576407 449366407

by z or by s. In Tables I, IV are reported confusion matrices

(conf.rows for rows and conf.columns for columns) from the
original data Datal and Data2, and those obtained by NBVD.
In clustering context, the initialization of NBVD by BEM parameters of our model is a Generalized EM. It appears
appears more interesting for NBVD and in this case, it Bfficient and suitable for high-dimensional data.

slightly advantageous to initialize by z. However, we note  In hard clustering context: 1) we have given a sense of
that NBVD does not seem improving the obtained clusterife criterion commonly used 2) we have proposed a general

by BEM. Hence, when the aim is co-clustering, BEM appeagsiterion taking into account the proportions of clustersl a
sufficient. the variances of each block 3) we have shown @akeucor

From BEM, we can define two criterigx — zaw”||2 and equivalent algorithms are hard versions of BEM and finally
||x — saw”'||2. The criteria in NBVD are improved in both We have shown that even if the approximation of data non-
cases (see Tables V and VI); we have a better approximatidggative is interesting with NBVD, its use without apprepri
whenr is initialized bys. ated initializations cannot give good co-clustering.
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