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Résumé

Le but de ce rapport est de faire le bilan des méthodes d’optimisation existantes pour extraire les tech-
niques nous permettant une mise en oeuvre efficace des méthodes proposées dans les tâches de classifica-
tion croisées et de sélection de modèle. Notre stratégie ici consiste pour obtenir une classification croisée
consiste à calculer une factorisation parcimonieuse en utilisant une pénalité de type `1. Le problème est
de savoir quel type d’algorithme faut-il mettre en œuvre pour calculer efficacement la solution.

Pour répondre à cette question, le travail a été organisé en deux parties. Dans un premier temps nous
avons cherché à comparer les méthodes permettant d’obtenir une factorisation parcimonieuse dans le but
de pouvoir choisir quelle était la mieux adaptée à la classification croisée. Ce travail constitue le premier
chapitre de ce rapport est soumis à une revue. Dans un second temps, nous nous sommes intéressé aux
méthode de factorisation des matrices binaires, et notamment à travers une modélisation utilisant la
régression logistique. Ce travail, encore en cours, fait l’objet du second chapitre de ce document.
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Chapitre 1

Surveying and comparing simultaneous
sparse approximation (or group-lasso)
algorithms

1.1 Introduction
Since several years now, there has been a lot of interest about sparse signal approximation. This large

interest comes from frequent wishes of practitioners to represent data in the most parsimonious way.
Recently, researchers have focused their efforts on a natural extension of sparse approximation problem

which is the problem of finding jointly sparse representations of multiple signal vectors. This problem
is also known as simultaneous sparse approximation and it can be stated as follows. Suppose we have
several signals describing the same phenomenon, and each signal is contaminated by noise. We want to
find the sparsest approximation of each signal by using the same set of elementary functions. Hence,
the problem consists in finding the best approximation of each signal while controlling the number of
functions involved in all the approximations.

Such a situation arises in many different application domains such as sensor networks signal processing
[31, 13], neuroelectromagnetic imaging [23, 38, 58], source localization [32], image restoration [19], and
distributed compressed sensing [28].

1.1.1 Problem formalization
Formally, the problem of simultaneous sparse approximation is the following. Suppose that we have

measured L signals {si}Li=1 where each signal is of the form si = Φci + ε where si ∈ RN , Φ ∈ RN×M is a
matrix of unit-norm elementary functions, ci ∈ RM a weighting vector and ε is a noise vector. Φ will be
denoted in the sequel as the dictionary matrix. Since we have several signals, the overall measurements
can be written as :

S = ΦC + E (1.1)

with S = [s1 s2 · · · sL] a signal matrix, C = [c1 c2 · · · cL] a coefficient matrix and E a noise matrix.
Note that in the sequel, we have adopted the following notations : ci,· and c·,j respectively denote the ith
row and jth column of matrix C and ci,j is the ith element in the jth column of C.

For the simultaneous sparse approximation (SSA) problem, the goal is then to recover the matrix
C given the signal matrix S and the dictionary Φ under the hypothesis that all signals si share the
same sparsity profile. This latter hypothesis can also be translated into the coefficient matrix C having
a minimal number of non-zero rows. In order to measure the number of non-zero rows of C, a possible
criterion is the so-called row-support or row-diversity measure of a coefficient matrix defined as

rowsupp(C) = {i ∈ [1 · · ·M ] : ci,k 6= 0 for some k}

The row-support of C tells us which atoms of the dictionary have been used for building the signal
matrix. Hence, if the cardinality of the row-support is lower than the dictionary cardinality, it means
that at least one atom of the dictionary has not been used for synthesizing the signal matrix. Then, the
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row-`0 pseudo-norm of a coefficient matrix can be defined as : ‖C‖row−0 = |rowsupp(C)|. According to
this definition, the simultaneous sparse approximation problem can be stated as

minC
1
2‖S−ΦC‖2F

st. ‖C‖row−0 ≤ T
(1.2)

where ‖ · ‖F is the Frobenius norm and T a user-defined parameter that controls the sparsity of the
solution. Note that the problem can also take the different form :

minC ‖C‖row−0

st. 1
2‖S−ΦC‖F ≤ ε

(1.3)

For this latter formulation, the problem translates in minimizing the number of non-zero rows in the
coefficient matrix C while keeping control on the approximation error. Both problems (1.2) and (1.3) are
appealing for their formulation clarity. However, similarly to the single signal approximation case, solving
these optimization problems are notably intractable because ‖ · ‖row−0 is a discrete-valued function.
Two ways of addressing these intractable problems (1.2) and (1.3) are possible : relaxing the problem by
replacing the ‖·‖row−0 function with a more tractable row-diversity measure or by using some suboptimal
algorithms.

A large class of relaxed versions of ‖ · ‖row−0 proposed in the literature are encompassed into the
following form :

Jp,q(C) =
∑
i

‖ci,·‖pq with ‖ci,·‖q =

∑
j

|ci,j |q
1/q

where typically p ≤ 1 and q ≥ 1. This penalty term can be interpreted as the `p quasi-norm of the
sequence {‖ci,·‖q}i. Note that as p converges to 0, Jp,q(C) provably converges towards

∑
i log(‖ci,·‖).

According to this relaxed version of the row-diversity measure, most of the algorithms proposed in the
literature try to solve the relaxed problem :

min
C

1

2
‖S−ΦC‖2F + λJp,q(C) (1.4)

where λ is another user-defined parameter that balances the approximation error and the sparsity-inducing
penalty Jp,q(C). The choice of p and q results in a compromise between the row-support sparsity and the
convexity of the optimization problem. Indeed, problem (1.4) is known to be convex when p, q ≥ 1 while
it is known to produce a row-sparse matrix C if p ≤ 1 (due to the penalty function singularity at C = 0
[17]).

The simultaneous sparse approximation problem as described here is equivalent to several other pro-
blems studied in other research communities. Problem (1.4) can be reformulated so as to make clear its
relation with some other problems denoted as the `p − `q group lasso [60] or block-sparse regression [29]
in statistics or block-sparse signal recovery [15] in signal processing. Indeed, let us define :

s̃ =

s1

...
sL

 Φ̃ =

Φ (0)
. . .

(0) Φ

 c̃ =

c1

...
cL


then, problem (1.4) can be equivalently rewritten as :

min
c̃

1

2
‖s̃− Φ̃c̃‖22 + λJ ′p,q(c̃) (1.5)

where J ′p,q(c̃) =
∑M
i=1 ‖c̃gi‖pq with gi being all the indices in c̃ related to the i-th element of the dictionary

matrix Φ.
As we have already stated, simultaneous sparse approximation and equivalent problems have been

investigated by diverse communities and have also been applied to various application problems. Since the
literature on these topics has been overwhelming since the last few years, The aim of this work is to gather
results from different communities (statistics, signal processing and machine learning) so as to survey,
analyze and compare different proposed algorithms for solving optimization problem (1.4) for different
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values of p and q. In particular, instead of merely summarizing existing results, we enrich our survey by
providing results like proof of convergence, formal relations between different algorithms and experimental
comparisons that were not available in the literature. These experimental comparisons essentially focus
on the computational complexity of the different methods, on their ability of recovering the signal sparsity
pattern and on the quality of approximation they provided evaluated through mean-square error.

Note that recently, there has been various works which addressed the simultaneous sparse approxi-
mation in the noiseless case [47, 45] and many works which aims at providing theoretical approximation
guarantees in both noiseless and noisy cases [8, 15, 34, 16, 26, 30]. Surveying these works is beyond the
scope of this paper and we suggest interested readers to follow for instance these pointers and references
therein.

The most frequent case of problem (1.4) encountered in the literature is the one where p = 1 and
q = 2. This case is the simpler one since it leads to a convex problem. We discuss different algorithms
for solving this problem in Section 1.2. Then, we survey in Section 1.3 generic algorithms that are able
to solve our approximation problems with different values of p and q. These algorithms are essentially
iterative reweighted `1 or `2 algorithms. Many works in the literature have focused on one algorithm for
solving a particular case of problem (1.4). These specific algorithms are discussed in section 1.4. Notably,
we present some greedy algorithms and discuss a sparse bayesian learning algorithm. The experimental
comparisons we carried out aim at clarifying how each algorithm behaves in terms of computational
complexity, in sparsity recovery and in approximation mean-square error. These results are described in
Section 1.5. For a sake of reproducibility, the code used in this paper has been made freely available 1.
Final discussions and conclusions are given in Section 1.6.

1.2 Solving the `1 − `2 optimization problem
The algorithm we propose in this section addresses the particular case of p = 1 and q = 2, denoted

as the M-BP problem. We show that the specific structure of the problem leads to a very simple block
coordinate descent algorithm named as M-BCD. We also show that if the dictionary is under-complete
then it can be proved that the solution of the problem is equivalent to a simple shrinkage of the coefficient
matrix. Proof of convergence of our M-BCD algorithm is also given in this section

Before delving into the algorithmic details, we should note that block-coordinate descent have already
been considered by Sardy et al. [42] and Elad [14] for sparse signal approximations from orthogonal and
redundant representations. Hence the numerical scheme we propose here can be seen as an extension of
their works to vector-valued data.

1.2.1 Deriving optimality conditions
The M-BP optimization problem is the following

min
C

W (C) =
1

2
‖S−ΦC‖2F + λ

∑
i

‖ci,·‖2 (1.6)

where the objective functionW (C) is a non-smooth but convex function. Since the problem is unconstrai-
ned a necessary and sufficient condition for a matrix C? to be a minimizer of (1.10) is that 0 ∈ ∂W (C?)
where ∂W (C) denotes the subdifferential of our objective value W (C) [4]. By computing the subdiffe-
rential of W (C) with respect to each row ci,· of C, the KKT optimality condition of problem (1.10) is
then

−ri + λgi,· = 0 ∀i

where ri = φti(S − ΦC) and gi,· is the i-th row of a subdifferential matrix G of J1,2(C) =
∑
i ‖ci,·‖2.

According to the J1,2’s subdifferential definition [39], the KKT optimality conditions can be rewritten as

−ri + λ
ci,·
‖ci,·‖2

= 0 ∀i, ci,· 6= 0 (1.7)

‖ri‖2 ≤ λ ∀i, ci,· = 0

1. http://asi.insa-rouen.fr/enseignants/~arakotom/code/SSAindex.html
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A matrix C satisfying these equations can be obtained after the following algebra. Let us expand each ri
so that

ri = φti(S−ΦC−i)− φtiφici,·
= Ti − ci,· (1.8)

where C−i is the matrix C with the i-th row being set to 0 and Ti = φti(S−ΦC−i). The second equality
is obtained by remembering that φtiφi=1. Then, equation (1.11) tells us that if ci,· is non-zero, Ti and ci,·
have to be collinear. Plugging all these points into equation (1.11) yields to an optimal solution that can
be obtained as :

ci,· =

(
1− λ

‖Ti‖

)
+

Ti ∀i (1.9)

From this update equation, we can derive a simple algorithm which consists in iteratively applying the
update (1.13) to each row of C.

1.2.2 The algorithm and its convergence
Our block-coordinate descent algorithm is detailed in Algorithm (2). It is a simple and efficient

algorithm for solving M-BP.
Basically, the idea consists in solving each row ci.· at a time. By starting from a sparse solution like,

C = 0, at each iteration, we check for a given i whether row ci,· is optimal or not based on conditions
(1.11). If not, ci,· is then updated according to equation (1.13).

Although, such a block-coordinate algorithm does not converge in general for non-smooth optimization
problem, Tseng [54] has shown that for an optimization problem which objective value is the sum of a
smooth and convex function and a non-smooth but block-separable convex function, block-coordinate
optimization converges towards the global minimum of the problem. Our proof of convergence is based
on such properties and follows the same line as the one proposed by Sardy et al. [42].

Theorem 1 The M-BCD algorithm converges to a solution of the M-Basis Pursuit problem given in
Equation (1.10), where convergence is understood as any accumulation point of the M-BCD algorithm is
a minimum of problem (1.10) and the sequence of {Ck} generated by the algorithm is bounded.

Proof 1 Note that M-BP problem presents a particular structure with a smooth and differentiable convex
function ‖S − ΦC‖2F and a row-separable penalty function

∑
i hi(ci,·) where h(·) is a continuous and

convex function with respects to ci,·.
Also note that our algorithm considers a cyclic rule where within each loop, for each i ∈ [1, · · · ,M ],

each ci,· is considered for optimization. The main particularity is that for some i, the ci,· may be left
unchanged by the block-coordinate descent if already optimal. This occurs especially for row ci,· which are
equal to 0.

Then according to the special structure of the problem and the use of a cyclic rule, the results of Tseng
[54] prove that our M-BCD algorithm converges.

Intuitively, we can understand this algorithm as an algorithm which tends to shrink to zero rows of
the coefficient matrix that contribute poorly to the approximation. Indeed, Ti can be interpreted as the
correlation between the residual when row i has been removed and φi. Hence the smaller the norm of Ti
is, the less φi is relevant in the approximation. And according to equation (1.13), the smaller the resulting
ci,· is. Insight into this block-coordinate descent algorithm can be further obtained by supposing that
M ≤ N and that Φ is composed of orthonormal elements of RN , hence ΦtΦ = I. In such situation, we
have

Ti = φtiS and ‖Ti‖22 =

L∑
k=1

(φtisk)2

and thus

ci,· =

1− λ√∑L
k (φtisk)2


+

φtiS

This last equation highlights the relation between the single Basis Pursuit (when L = 1) and the Multiple-
Basis Pursuit algorithm presented here. Both algorithms lead to a shrinkage of the coefficient projection.
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Algorithm 1 Solving M-BP through block-coordinate descent
1: C = 0, Loop = 1
2: while Loop do
3: for i = 1, 2, · · · ,M do
4: Compute ‖ri‖
5: if optimality condition of ci,· according to equations (1.11) is not satisfied then
6: ci,· =

(
1− λ

‖Ti‖

)
+
Ti

7: end if
8: end for
9: if all optimality conditions are satisfied then

10: Loop = 0
11: end if
12: end while

With the inclusion of multiple signals, the shrinking factor becomes more robust to noise since it depends
on the correlation of the atom φi to all signals.

1.2.3 Some relations with other works
As we have already stated, our M-BCD algorithm can be considered as an extension to simultaneous

signal approximations of the works of Sardy et al. [42] and Elad [14]. However, here, we want to emphasize
the importance of starting from a C = 0. Indeed, since in the estimated Ĉ is expected to be sparse, by
doing so, only few updates are needed before convergence.

In addition to the works of Sardy et al. and Elad, many others authors have considered block-
coordinate descent algorithm for related sparse approximation problems. For instance, it has also been
used for solving the Lasso [21], and the elastic net [61]. Other works have also considered iterative thre-
sholding algorithms for solving single signal sparse approximation problem [11, 19].

For recovering vector valued data with joint sparsity constraints, Fornasier et al. [? ] have proposed
an extension of the Landweber iterative approach of Daubechies et al. [11]. In their work, Fornasier et al.
have also used an iterative shrinking algorithm (which has the flavor of a gradient projection approach)
which is able to solve the general problem (1.4) with p = 1 and q = {1, 2,∞}. For q = 2, the main
difference between their algorithm and the one we propose here is that, by optimizing at each loop, only
the ci,·’s that are not optimal yet, we have an algorithm that is more efficient than the one of Fornasier
et al.

As we stated previously, the M-FOCUSS algorithm also solves the M-BP problem. In their M-FOCUSS
approach, Cotter et al. [10] have proposed a factored gradient algorithm. That algorithm is related to
iterative reweighted least-squares, which at each iteration updates the coefficient matrix C. However,
their factored gradient algorithm presents a important issue. Indeed, the updates they propose are not
guaranteed to converge to a local minima of the problem (if the problem is not convex p < 1) or to the
global minimum of the convex problem (p = 1). Indeed, their algorithm presents several fixed-points since
when a row of C is equal to 0, it stays at 0 at the next iteration. Although such a point may be harmless
if the algorithm is initialized with a “good” starting point, it is nonetheless an undesirable point when
solving a convex problem. At the contrary, our M-BCD algorithm does not suffer from the presence of
such fixed-points. However, such fixed-points in the M-FOCUSS algorithm can be handled by introducing
a smoothing term ε in the weight so that the updated weight (according to Cotter’s notation and for
p = 1) becomes

W = diag
(√
‖ci,·‖+ ε

)
where W is the diagonal weighting matrix and ε > 0. The use of ε avoids a given weight to be at zero
and consequently it avoids the related ci,· to stay permanently at zero. Then if we furthermore note that
M-FOCUSS is not more than an iterative reweighted least-square. According to the very recent works
of Daubechies et al. [12] and Chartrand et al. [7], it seems justified to iterate the M-FOCUSS algorithm
using decreasing value of ε. In our numerical experimental, we will consider the M-FOCUSS algorithm
with fixed and decreasing value of ε.
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1.2.4 Evaluating complexity
From a computational complexity point of view, it is not possible to evaluate the exact number

of iterations that will be needed before convergence of our algorithm. However, we can analyze the
computational cost per each iteration. Although, this may not be relevant since the number of iterations
needed for the considered algorithms to converge may be very different, such knowledge give an hint about
the algorithm scaling with respects to parameters of the simultaneous sparse approximation problem.

For our M-BCD algorithm, we can note that each shrinking operation, in the worst case scenario, has
to be done M times and the dominating cost for each update is the computation of Ti. This computation
involves the matrix multiplication ΦC−i and a matrix-vector multiplication which respectively need
O(NML) and O(NL) operations. On the overall, if we assume that at each iteration, all ci,· are updated,
we can consider that the computational cost of our algorithm is about O(M2NL). This cost per iteration
can be compared to the one of M-FOCUSS algorithm and second-order code programming of Malioutov
et. al [32] which are respectivelyO(MN2) andO(M3L3). Theoretically, it seems that our algorithm suffers
more than M-FOCUSS from large dictionary size but it is far more efficient than the SOC programming.

Illustrations of how our algorithm behaves and empirical computational complexity evaluations are
given in section 1.5.

When p = 1, q = 2, optimization problem (1.4) becomes a particular problem named as M-BP for
Multiple Basis Pursuit in the sequel. It is a special case that deserves attention. Indeed, it seems to be
the most natural extension of the so-called Lasso problem [49] or Basis Pursuit Denoising [9], since for
L = 1, it can be easily shown that problem (1.4) reduced to these two problems. The key point of this
case is that it yields to a convex optimization problem and thus it can benefit from all properties resulting
from convexity e.g global minimum. One of the first algorithm addressing such the M-BP problem is the
one proposed by Cotter et al. [10] known as M-FOCUSS. Such an algorithm based on factored gradient
descent works for any p ≤ 1 and has been proved to converge towards a local or global (when p = 1)
minimum of problem (1.4) if it does not get stuck into a fixed point. Because, M-FOCUSS is better
tailored for situations where p ≤ 1, we post-pone its description to next section. The two algorithms on
which we focus on herein, are based on a block-coordinate descent as proposed by Yuan et al. [60] for
the group lasso and the one based on Landweber iterations of Fornasier et al. [19]. We have biased our
survey towards these two approaches because of their efficiencies and their convergence properties.

1.2.5 Block Coordinate descent
The specific structure of the optimization problem (1.4) for p = 1 and q = 2 leads to a very simple

block coordinate descent algorithm that we name as M-BCD. Here, we provide a more detailed derivation
of the algorithm and we also give results that were not available in the Yuan et al. work [60]. We provide
a proof of convergence of the M-BCD algorithm and we show that if the dictionary is under-complete
then it can be proved that the solution of the problem is equivalent to a simple shrinkage of the coefficient
matrix.

Deriving optimality conditions

The M-BP optimization problem is the following

min
C

W (C) =
1

2
‖S−ΦC‖2F + λ

∑
i

‖ci,·‖2 (1.10)

where the objective functionW (C) is a non-smooth but convex function. Since the problem is unconstrai-
ned a necessary and sufficient condition for a matrix C? to be a minimizer of (1.10) is that 0 ∈ ∂W (C?)
where ∂W (C) denotes the subdifferential of our objective value W (C) [4]. By computing the subdiffe-
rential of W (C) with respect to each row ci,· of C, the KKT optimality condition of problem (1.10) is
then

−ri + λgi,· = 0 ∀i

where ri = φti(S − ΦC) and gi,· is the i-th row of a subdifferential matrix G of J1,2(C) =
∑
i ‖ci,·‖2.

According to the J1,2’s subdifferential definition given in the appendix, the KKT optimality conditions
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can be rewritten as

−ri + λ
ci,·
‖ci,·‖2

= 0 ∀i, ci,· 6= 0 (1.11)

‖ri‖2 ≤ λ ∀i, ci,· = 0

A matrix C satisfying these equations can be obtained after the following algebra. Let us expand each ri
so that

ri = φti(S−ΦC−i)− φtiφici,·
= Ti − ci,· (1.12)

where C−i is the matrix C with the i-th row being set to 0 and Ti = φti(S−ΦC−i). The second equality
is obtained by remembering that φtiφi=1. Then, equation (1.11) tells us that if ci,· is non-zero, Ti and ci,·
have to be collinear. Plugging all these points into equation (1.11) yields to an optimal solution that can
be obtained as :

ci,· =

(
1− λ

‖Ti‖

)
+

Ti ∀i (1.13)

where (x)+ = x if x > 0 and 0 otherwise. From this update equation, we can derive a simple algorithm
which consists in iteratively applying the update (1.13) to each row of C.

The algorithm and its convergence

Our block-coordinate descent algorithm is detailed in Algorithm (2). It is a simple and efficient
algorithm for solving M-BP.

Basically, the idea consists in solving each row ci.· at a time. By starting from a sparse solution like,
C = 0, at each iteration, one checks for a given i whether row ci,· is optimal or not based on conditions
(1.11). If not, ci,· is then updated according to equation (1.13).

Although, such a block-coordinate algorithm does not converge in general for non-smooth optimization
problem, Tseng [54] has shown that for an optimization problem which objective value is the sum of a
smooth and convex function and a non-smooth but block-separable convex function, block-coordinate
optimization converges towards the global minimum of the problem. Our proof of convergence is based
on such properties and follows the same lines as the one proposed by Sardy et al. [42] for a single signal
approximation.

Theorem 2 The M-BCD algorithm converges to a solution of the M-Basis Pursuit problem given in
Equation (1.10), where convergence is understood as any accumulation point of the M-BCD algorithm is
a minimum of problem (1.10) and the sequence of {Ck} generated by the algorithm is bounded.

Proof 2 Note that M-BP problem presents a particular structure with a smooth and differentiable convex
function ‖S − ΦC‖2F and a row-separable penalty function

∑
i hi(ci,·) where h(·) is a continuous and

convex function with respects to ci,·.
Also note that our algorithm considers a cyclic rule where within each loop, for any i ∈ [1, · · · ,M ],

each ci,· is considered for optimization. The main particularity is that for some i, the ci,· may be left
unchanged by the block-coordinate descent if already optimal. This occurs especially for row ci,· which are
equal to 0.

Then according to the special structure of the problem and the use of a cyclic rule, the results of Tseng
[54] prove that our M-BCD algorithm converges.

Another point we want to emphasize and that has not been shed to light yet is that this algorithm
should be initialized at C = 0 so as to take advantage of the sparsity pattern of the solution. Indeed, by
doing so, only few updates are needed before convergence.

Intuitively, we can understand this algorithm as an algorithm which tends to shrink to zero rows of
the coefficient matrix that contribute poorly to the approximation. Indeed, Ti can be interpreted as the
correlation between the residual when row i has been removed and φi. Hence the smaller the norm of Ti
is, the less φi is relevant in the approximation. And according to equation (1.13), the smaller the resulting
ci,· is. Insight into this block-coordinate descent algorithm can be further obtained by supposing that
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Algorithm 2 Solving M-BP through block-coordinate descent
1: t=1,C(0) = 0, Loop = 1,
2: while Loop do
3: for i = 1, 2, · · · ,M do
4: Compute ‖ri‖
5: if optimality condition of ci,· according to equations (1.11) is not satisfied then
6: Ti ← φti(S−ΦC(t−1)

i
)

7: c
(t)
i,· ←

(
1− λ

‖Ti‖

)
+
Ti

8: end if
9: t← t+ 1

10: end for
11: if all optimality conditions are satisfied then
12: Loop = 0
13: end if
14: end while

M ≤ N and that Φ is composed of orthonormal elements of RN , hence ΦtΦ = I. In such a situation, we
have

Ti = φtiS and ‖Ti‖22 =

L∑
k=1

(φtisk)2

and thus

ci,· =

1− λ√∑L
k (φtisk)2


+

φtiS

This last equation highlights the relation between the single Basis Pursuit (when L = 1) and the Multiple-
Basis Pursuit algorithm presented here. Both algorithms lead to a shrinkage of the coefficient projection
when considering orthonormal dictionary elements. With the inclusion of multiple signals, the shrinking
factor becomes more robust to noise since it depends on the correlation of the atom φi to all signals.

This M-BCD algorithm can be considered as an extension to simultaneous signal approximations of
the works of Sardy et al. [42] and Elad [14] which also considered block coordinate descent for single
signal approximation. In addition to the works of Sardy et al. and Elad, many others authors have
considered block-coordinate descent algorithm for related sparse approximation problems. For instance,
block coordinate descent has also been used for solving the Lasso [21], and the elastic net [61].

1.2.6 Landweber iterations
For recovering vector valued data with joint sparsity constraints, Fornasier et al. [19] have proposed

an extension of the Landweber iterative approach introduced by Daubechies et al. [11]. In their work,
Fornasier et al. used an iterative shrinking algorithm (which has the flavor of a gradient projection
approach) which is able to solve the general problem (1.4) with p = 1 and q = {1, 2,∞}. We summarize
here the details of their derivations for general q.

The problem to solve is the one given in Equation (1.4) with p = 1 :

min
C

1

2
‖S−ΦC‖2F + λ

∑
i

‖ci,.‖q (1.14)

The iterative algorithm can be derived first by supposing that the objective function given above is strictly
convex then by defining the following surrogate objective function :

Jsur(C,A) =
1

2
‖S−ΦC‖2F + λ

∑
i

‖ci,.‖q +
1

2
‖ΦC−ΦA‖2F −

1

2
‖C−A‖2F

From this surrogate function, Fornasier et al. considers the solution of problem (1.4) as the limit of the
sequence C(t) :

C(t+1) = arg min
C

Jsur(C,C
(t))

9



Algorithm 3 Solving M-BP through Landweber iterations
1: C(0) = 0, Loop = 1, t=0
2: while Loop do
3: C(t+ 1

2 ) ← C(t) + Φt(S−ΦC(t))
4: for i = 1, 2, · · · ,M do
5: Compute ‖c(t+1/2)

i,. ‖

6: c
(t+1)
i,· =

(
1− λ

‖c
(t+1

2
)

i,· ‖

)
+

c
(t+ 1

2 )
i,.

7: end for
8: t← t+ 1
9: if stopping criterions are satisfied then

10: Loop = 0
11: end if
12: end while

Note that according to the additional terms (the last two ones) in the surrogate function, C(t+1) is
a coefficient matrix that minimizes the desired objective function plus terms that constraints C(t+1)

and the novel signal approximation ΦC(t+1) to be “closed” respectively to C(t) and the previous signal
approximation ΦC(t).

Now, the minimizer of Jsur for fixed A can be obtained by expanding Jsur as

Jsur(C,A) =
1

2
‖(A + Φt(S−ΦA))−C‖2F + λ

∑
i

‖ci,.‖q

−1

2
‖A + Φt(S−ΦA)‖2 +

1

2
‖S‖2F −

1

2
‖ΦA‖2F +

1

2
‖A‖2F

and noticing that the second line of this equation does not depend on C. Thus we have

arg min
C

Jsur(C,A) = Uq(A + Φt(S−ΦA))

with Uq(X) being defined as

Uq(X) = arg min
C

1

2
‖X−C‖2F + λ

∑
i

‖ci,.‖q (1.15)

Thus the iterative algorithm we get simply reads, at iteration t as :

C(t+1) = Uq(C
(t) + Φt(S−Φ)C(t)) (1.16)

The Landweber algorithm proposed by Fornasier et al. involves two steps : a first step which is similar
to a gradient descent with fixed step and which does not take into account the sparsity constraint and
a thresholding step through the operator Uq(·), which updates the solution according to the penalty∑
i ‖ci,.‖q. Fornasier et al. give detailed information of the Uq(·) closed form for q = {1, 2,∞}. We can

note that the problem (1.15) decouples with respect to the row of C and the thresholding operator Uq(·)
acts independently on each row.

According to Fornasier et al. [19], for q = 2, U2(C) writes for each row ci,· as :

[U2(C)]i,· =

(
1− λ

‖ci‖

)
+

ci,.

and the full algorithm is summarized in Algorithm 3. We note that block-coordinate descent and Landwe-
ber iterations yield to algorithms that are very similar. Two differences can be noted. The first one is that
the shrinking operation for one case is based on Ti while in the other case it directly considers ci,·. At the
moment, it is not clear what are the implications of these two different schemes in term of convergence
rate and more investigations are needed to clarify this point. The other main difference between the two
approaches is that, by optimizing at each loop, only the ci,·’s that are not optimal yet, the BCD algorithm
is more efficient than the one of Fornasier et al.

Note that Fornasier et al. have also shown that this iterative scheme converges towards the minimizer
of problem (1.4) for 1 ≥ q ≥ ∞.
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1.2.7 Other works
Besides the M-FOCUSS algorithm of Cotter et al., another seminal work which considered the SSA

problem is the one of Malioutov et al. [32]. While dealing with a source localization problem, they had
to consider a sparse approximation problem with joint sparsity constraints. From the block-sparse signal
approximation problem

min
c̃

1

2
‖s̃− Φ̃c̃‖2 + λ

M∑
i

‖c̃gi‖2

they derived an equivalent problem which writes as :

minp,q,r,c̃ p+ λq

st. 1
2‖s̃− Φ̃c̃‖22 ≤ p∑M
i=1 ri ≤ q

‖cgi‖ ≤ ri ∀i = 1, · · · ,M

Note that this above problem has a linear objective function and linear and second-order cone constraints.
Such a problem is known as a second-order cone programming problem and there exists interior point me-
thod for solving it [46]. While very attractive because of its simple formulation and the global convergence
of the algorithm, this approach suffers from a high complexity which is of the order O(M3L3).

Very recently, two other algorithms have been proposed for addressing our jointly sparse approximation
problem. The first one, derived by van den Berg et al. [55] is very similar to the one of Fornasier et
al. although from a different perspective. Indeed, they develop a method based on spectral gradient
projection for solving the Group lasso problem which is the one given in Equation (1.5) with p = 1 and
q = 2. However, instead of the regularized version, they considered the following constrained version

minc̃
1
2‖s̃− Φ̃c̃‖2

st.
∑M
i ‖c̃gi‖2 ≤ τ

that they iteratively solve owing to spectral gradient projection. Basically, their solution iterates write as

c̃(t+1) = P
(
c̃(t) + αΦ̃t(s̃− Φ̃c̃(t))

)
(1.17)

where α is some step size to be optimized for instance by backtracking and P (·) is the projection operator
defined as :

P (z) =

{
arg min

x
‖z− x‖subject to

∑
i

‖xgi‖2 ≤ τ

}
van den Berg et al. then proposed an algorithm that computes this projection in linear time. Note how
similar the iterates given in Equation (1.16) and (1.17) are. Actually, approaches of Fornasier et al. and
van den Berg et al. are equivalent and the only point in which they differ is the way the projection
are computed. This difference essentially comes from the problem formulation : Fornasier et al. use a
penalized problem with known λ while van den Berg consider the constrained optimization problem.
Hence, the latter can not directly use the analytic solution of the projection P (·) but have to compute
the appropriate value of λ given their value of τ . However, the algorithm they derive for this projection
is efficient. Note that if one has some prior knowledge on the value of τ , then this algorithm would be
preferable than the one of Fornasier et al.

The other recent work that is noteworthy is the one of Obozinski et al. [36]. They address the problem
of SSA within the context of multi-task classification problem. Indeed, they want to recover a common
set of covariates that are simultaneously relevant for all classification tasks. For achieving this aim,
they propose to solve problem (1.4) with p = 1, q = 2 and a differentiable loss function such as the
logistic loss or the square loss function. One of their most prominent contribution is to have proposed
a path-following algorithm that is able to compute the regularization path of the solution with respects
to λ. Their algorithm uses a continuation method based on prediction-correction steps. The prediction
step is built upon the optimality conditions given in equation (1.11) while the correction step needs an
algorithm which solves problem (1.4) but only for a small subset of covariates. The main advantage of
such an algorithm is its efficiency for selecting an appropriate value of λ in a model selection context.
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1.3 Generic algorithms for large classes of p and q

In this section, we present several algorithms that are able to solve the simultaneous sparse approxi-
mation problem for a large classes of p and q. In the first part of the section, we review the M-FOCUSS
algorithm of Cotter et al.[? ] that addresses the case where 0 < p ≤ 1 and q = 2. In a second part, we
make clear how the penalization term Jp,q(C) with p = 1 and 1 ≤ q ≤ 2, is related to automatic relevance
determination. From this novel insight, we then propose an iterative reweighted least-square algorithm
that solves this general case. The last part of the section is devoted to the extension of reweighted `1
algorithms [62, 6] to the SSA problem. We describe how algorithms tailored for solving the SSA problem
with p = 1 and any q can be re-used for solving a problem with the same q but p < 1.

1.3.1 M-FOCUSS algorithm
We first detail how the M-FOCUSS algorithm proposed by Cotter et al. [10] can be derived, then we

discuss some of its properties and relation with other works.

Deriving the algorithm

M-FOCUSS is, as far as we know, the first algorithm that has been introduced for solving simultaneous
sparse approximation problem. M-FOCUSS addresses the general case where q = 2 and p ≤ 1. This
algorithm can be understood as a fixed-point algorithm which can be derived through an appropriate
factorization of problem (1.4) objective function gradient.

Indeed, since the partial derivative of Jp,2(C) with respects to an entry cm,n is :

∂Jp,2(C)

∂cm,n
=

∂

∂cm,n

∑
i

∑
j

c2i,j

p/2

(1.18)

= p‖cm,·‖p−2
2 cm,n

the gradient of the objective function writes :

−Φt(S−ΦC) + λPC

where P = diag(p‖ci,·‖p−2
2 ). Then, we define the weighting matrix W as W = diag(p−1/2‖ci,·‖1−p/22 ).

After having replaced W−2 = P in the above gradient, and after simple algebras, we have the following
necessary optimality condition (

(ΦW)t(ΦW) + λI
)
W−1C = (ΦW)tS.

Hence, the optimum solution writes as

C? = W
(
(ΦW)t(ΦW) + λI

)−1
(ΦW)tS. (1.19)

Note that since W also depends on C, the above closed-form expression of the optimal matrix C can be
interpreted as a fixed-point algorithm. From this insight on C, Cotter et al. suggest the following iterates
for solving the simultaneous sparse approximation problem :

C(t+1) = W(t)
(

(ΦW(t))t(ΦW(t)) + λI
)−1

(ΦW(t))tS (1.20)

where W(t) = diag(p−1/2‖c(t)i,· ‖
1−p/2
2 ). Now, since we have :(

(ΦW(t))t(ΦW(t)) + λI
)−1

(ΦW(t))t = (ΦW(t))t
(

(ΦW(t))(ΦW(t))t + λI
)−1

Cotter et al. actually consider the following iterative scheme

C(t+1) = W(t)(ΦW(t))t
(

(ΦW(t))(ΦW(t))t + λI
)−1

S (1.21)

Resulting algorithm is detailed in Algorithm 4.
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Algorithm 4 M-FOCUSS with Jp≤1,q=2 penalty

1: Initialize C(0) to a matrix of 1, t = 1
2: while Loop do
3: W(t) ← diag(p−1/2‖c(t−1)

i,· ‖1−p/22 )

4: A(t) ← ΦW(t)

5: C(t) ←W(t)(A(t))t
(
A(t)(A(t))t + λI)

)−1
S

6: t← t+ 1
7: if stopping condition is satisfied then
8: Loop = 0
9: end if

10: end while

Discussing M-FOCUSS

Rao et al [40] has provided an interesting interpretation on the FOCUSS algorithm for a single signal
approximation which can be readily extend to M-FOCUSS. Indeed, M-FOCUSS can be viewed as an
iterative reweighted least-square algorithm. Indeed, From the updating equation of C(t) (see Equation
(1.20)) , we can note that C(t) = W(t)Z(t) where Z is the minimizer of

1

2
‖S−ΦW(t)Z‖2F +

λ

2
‖Z‖2F

and thus C(t) can be understood as the minimizer of

1

2
‖S−ΦC‖2F +

λ

2
‖(W(t))−1C‖2F .

This above equation makes clear the relation between sparse approximation problem and iterative re-
weighted least-square. Such an connection has already been highlighted in other context. Indeed, while
sparsity is usually induced by using `1 norm penalty, it has been proved that solving the problem in
which the `1 norm has been replaced by an adaptive `2 norm leads to equivalent solutions [12, 41, 24].

Despite this nice insight, M-FOCUSS presents an important issue. Indeed, the updates proposed by
Cotter et al. are not guaranteed to converge to a local minimum of the problem (if the problem is not
convex p < 1) or to the global minimum of the convex problem (p = 1). Their algorithm presents several
fixed-points since when a row of C is equal to 0, it stays at 0 at the next iteration. Although such a point
may be harmless if the algorithm is initialized with a “good” starting point, it is nonetheless an undesirable
point when solving a convex problem. At the contrary, the M-BCD and the Landweber iteration based
algorithms do not suffer from the presence of such fixed points. However, in the M-FOCUSS algorithm,
this pathological behavior can be handled by introducing a smoothing term ε in the weight so that the
updated weight becomes

W(t) = diag
(
p−1/2

(
‖c(t)i,· ‖+ ε)

)1−p/2
)

where ε > 0. The use of ε avoids a given weight to be at zero and consequently it avoids the related
ci,· to stay permanently at zero. If we furthermore note that M-FOCUSS is not more than an iterative
reweighted least-square, then according to the very recent works of Daubechies et al. [12] and Chartrand et
al. [7], it seems justified to iterate the M-FOCUSS algorithm using decreasing value of ε. In our numerical
experimental, we will consider the M-FOCUSS algorithm with fixed and decreasing value of ε.

1.3.2 Automatic relevance determination approach
In this section, we focus on the relaxed optimization problem given in (1.4) with the general penaliza-

tion Jp,q(C). Our objective here is to clarify the connection between such a form of penalization and the
automatic relevance determination of C’s rows, which has been the keystone of the Bayesian approach of
Wipf et al [59]. We will show that for some values of p and q, the mixed-norm Jp,q(C) has an equivalent
variational formulation. Then, by using this novel formulation in problem (1.4), instead of Jp,q(C), we
exhibit the relation between our sparse approximation problem and ARD. We then propose an iterative
reweighted least-square approach for solving this resulting ARD problem.
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Exhibiting the relation with ARD

For this purpose, we first consider the following formulation of the simultaneous sparse approximation
problem :

min
C

1

2
‖S−ΦC‖2F + λ′ (Jp,q(C))

2
p . (1.22)

In the convex case (for p ≥ 1 and q ≥ 1), since the power function is strictly monotonically increasing,
problems (1.4) and (1.22) are equivalent, in the sense that for a given value λ′, there exists a λ so that
solutions of the two problems are equivalent. When Jp,q is not convex, this equivalence does not strictly
apply. However, due to the nature of the problem, the problem formulation (1.22) is more convenient for
exhibiting the relation with ARD.

Let us introduce the key lemma that allows us to derive the ARD-based formulation of the problem.
This lemma gives a variational form of the `p,q norm of a sequence {at,k}.

Lemma 1 if s > 0 and {at,k : k ∈ Nn, t ∈ NT } ∈ R such that at least one at,k > 0, then

min
d

∑
t,k

|at,k|2

dt,k
: dt,k ≥ 0,

∑
k

(∑
t

d
1/s
t,k

) s
r+s

≤ 1

 =

∑
k

(∑
t

|at,k|q
) p

q

 2
p

(1.23)

where q = 2
s+1 and p = 2

s+r+1 . Furthermore, at optimality, we have :

d?t,k =
|at,k|

2s
s+1

(∑
u |au,k|

2
s+1

) r
s+r+1

(∑
v

(∑
u |au,v|

2
s+1

) s+1
s+r+1

)r+s (1.24)

Proof : the proof has been post-poned to the appendix.

According to this lemma, the `p,q norm of a sequence can be computed through a minimization
problem. Hence, applying this lemma to (Jp,q(C))

2
p by defining at,k = ct,k, we get a variational form

of the penalization term. We can also note that the mixed-norm on the matrix coefficients has been
transformed to a mixed-norm on weight matrix d. Plugging the above variational formulation of the
penalization term in problem (1.22) yields to the following equivalent problem :

min
C,d

1
2‖S−ΦC‖2F + λ

∑
t,k

c2t,k
dt,k

s.t.
∑
k

(∑
t d

1/s
t,k

) s
r+s ≤ 1

dt,k ≥ 0 ∀t, k

(1.25)

This problem is the one which makes clear the automatic relevance determination interpretation of the
original formulation (1.4). Indeed, we have transformed problem (1.4) into a problem with a smooth
objective function at the expense of some additional variables dt,k. These parameters dt,k actually aim
at determining the relevance of each element of C. Indeed, in the objective function, each squared-value
ct,k is now inversely weighted by a coefficient dt,k. By taking the convention that x

0 = ∞ if x 6= 0 and
0 otherwise, the objective value of the optimization problem becomes finite only if dt,k = 0 for c2t,k = 0.
Then the smaller dt,k is, the smaller the ct,k norm should be. Furthermore, optimization problem (1.25)
also involves some constraints on {dt,k}. These constraints impose the matrix d to have positive elements
and to be so that its ` 1

r+s ,
1
s
mixed-norm is smaller than 1. Note that this mixed-norm on d plays an

important role since it induces the row-norm sparsity on C. According to the relation between p, r and
s, for p < 1, we also have r + s > 1, making the ` 1

r+s ,
1
s
non-differentiable with respect to the first norm.

Such singularities favor row-norm sparsity of the matrix d at optimality, inducing row-norm sparsity
of C. As we have noted above, when a row-norm of d is equal to 0, the corresponding row-norm of C
should also be equal to 0 which means that the corresponding element of the dictionary is “irrelevant”
for the approximation of all signals. Problem (1.25) proposes an equivalent formulation of problem (1.4)
for which the row-diversity measure has been transformed in another penalty function owing to an ARD
formulation. The trade-off between convexity of the problem and the sparsity of the solution has been
transferred from p and q to r and s.
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Algorithm 5 Iterative Reweighted Least-Square for addressing J1,1≤q≤2 penalty

1: Initialize d(0) to a strictly positive matrix, t = 1
2: while Loop do
3: C(t) ← solution of problem (1.26) with fixed d = d(t−1) as given by Equation (1.27)
4: d(t) ← solution of problem (1.26) with fixed C = C(t) as given by Equation (1.28)
5: t← t+ 1
6: if stopping condition is satisfied then
7: Loop = 0
8: end if
9: end while

From a Bayesian perspective, we can interpret the mixed-norm on d as the diagonal term of the
covariance matrix of a Gaussian prior over the row-norm on C distribution. This is typically the classical
Bayesian Automatic Relevance Determination approach as proposed for instance by Tipping [50]. This
novel insight on the ARD interpretation of Jp,q(C) clarifies the connection between the M-FOCUSS
algorithm of Cotter et al. [10] and the Multiple Sparse Bayesian Learning (M-SBL) algorithm of Wipf et
al. [59] for any value of p < 1. In their previous works, Wipf et al. have proved that these two algorithms
were related when p ≈ 0. Here, we refine their result by enlarging the connection to other values of p by
showing that both algorithms actually solve a problem with automatic relevance determination on the
row-norm of C.

1.3.3 Solving the ARD formulation for p = 1 and 1 ≤ q ≤ 2

Herein, we propose a simple iterative algorithm for solving problem (1.25) for p = 1 and 1 ≤ q ≤ 2.
This algorithm, named as M-EMq, is based on an iterative-reweighted least squares where the weights are
updated according to equation (1.24). Thus, it can be seen as an extension of the M-FOCUSS algorithm
of Cotter et al. for q ≤ 2. Note that we have restricted ourselves to p = 1 since we will show in the next
section that the case p < 1 can be handled using another reweighted scheme.

Since p = 1, thus s+ r = 1, the problem we are considering is :

min
C,d

∑
k

1
2

(
‖sk −Φc·,k‖22 + λ

∑
t

c2t,k
dt,k

)
= Jobj(C,d)

s.t.
∑
k

(∑
t d

1/s
t,k

)s
≤ 1

dt,k ≥ 0

(1.26)

Since, we consider that 1 ≤ q ≤ 2 hence 0 ≤ s ≤ 1 2, this optimization problem is convex with a
smooth objective function. We propose to address this problem through a block-coordinate algorithm
which alternatively solves the problem with respects to C with the weight d being fixed, and keeping C
fixed and computing the optimal weight d. The resulting algorithm is detailed in Algorithm 5.

Owing to the problem structure, step 4 and 5 of this algorithm has a simple closed form. Indeed, for
fixed d, each vector c(t)·,k at iteration t is given by :

c
(t)
·,k =

(
ΦtΦ + 2λD

(t−1)
k

)−1

Φtsk (1.27)

where D
(t−1)
k is a diagonal matrix of entries 1/d

(t−1)
·,k . In a similar way, for fixed C, step 5 boils down in

solving problem (1.23). Hence, by defining at,k = c
(t)
t,k, we also have a closed-form for d(t) as

d
(t)
t,k =

|at,k|
2s

s+1

(∑
u |au,k|

2
s+1

) 1−s
2

∑
v

(∑
u |au,v|

2
s+1

) s+1
2

(1.28)

Note that similarly to the M-FOCUSS algorithm, this algorithm can also be seen as an iterative
reweighted least-square approach or as an Expectation-Minimization algorithm, where the weights are

2. for s = 0, we have explicitly used the sup norm of vector d·,k in the constraints.
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defined in equation (1.28). Furthermore, it can be shown that if the weights d are initialized to non-zero
values then at each loop involving step 4 and 5, the objective value of problem (1.26) decreases. Hence,
since the problem is convex, our algorithm should converge towards the global minimum of the problem.

Theorem 3 If the objective value of problem (1.26) is strictly convex (for instance when Φ is full-rank),
and if for the t-th loop, after the step 5, we have d(t) 6= d(t−1), then the objective value has decreased,
i.e :

Jobj(C
(t+1),d(t)) < Jobj(C

(t),d(t)) < Jobj(C
(t),d(t−1)).

Proof : The right inequality Jobj(C(t),d(t)) < Jobj(C
(t),d(t−1)) comes from d(t) being the optimal value

of the optimization problem resulting from step 5 of algorithm (5). The strict inequality yields from the
hypothesis that d(t) 6= d(t−1) and from the strict convexity of the objective function. A similar reasoning
allows us to derive the left inequality. Indeed, since C(t) is not optimal with respects to d(t) for the pro-
blem given by step (4), invoking the strict convexity of the associated objective function and optimality
of C(t+1) concludes the proof.

As stated by the above theorem, the decrease in objective value is actually guaranteed unless, the
algorithm get stuck in some fixed points (e.g all the elements of d being zero expect for one entry
{t1, k1}). In practice, we have experienced, by comparing for q = 2 with the M-BCD algorithm, that if
d is initialized to non-zero entries, algorithm (5) converges to the global minimum of problem (1.26).
Numerical experiments will illustrate this point.

1.3.4 Iterative reweighted `1 − `q algorithms for p < 1

This section introduces an iterative reweighted M-Basis Pursuit (IrM-BP) algorithm and proposes a
way for setting the weight. Through this approach, we are able to provide an iterative algorithm which
solves problem (1.4) with p < 1 and 1 ≤ q ≤ 2.

Iterative reweighted algorithm

Recently, several works have advocated that sparse approximations can be recovered through iterative
algorithms based on a reweighted `1 minimization [62, 6, 7, 58, 20]. Typically, for a single signal case, the
idea consists in iteratively solving the following problem

min
c

1

2
‖s−Φc‖22 + λ

∑
i

zi|ci|

where zi are some positive weights, and then to update the positive weights zi according to the solution
c? of the above problem. Besides providing empirical evidences that reweighted `1 minimization yields
to sparser solutions than a simple `1 minimization, the above cited works theoretically support such a
claim. These results for the single signal approximation case suggest that in the simultaneous sparse ap-
proximation problem, reweighted M-Basis Pursuit would also lead to sparser solutions than the classical
M-Basis Pursuit.

The iterative reweighted M-Basis Pursuit algorithm is defined as follows. We iteratively construct a
sequence C(t) defined as

C(t) = argmin
C

1

2
‖S−ΦC‖2F + λ

∑
i

z
(t)
i ‖ci,·‖q (1.29)

where the positive weight vector z(t) depends on the previous iterate C(t−1). For t = 1, we typically define
z(1) = 1 and for t > 1, we will consider the following weighting scheme

z
(t)
i =

1

(‖c(t−1)
i,· ‖q + ε)r

∀i (1.30)

where {c(t−1)
i,· } is the i-th row of C(t−1), r a user-defined positive constant and ε a small regularization

term that prevents from having an infinite regularization term for ci,·as soon as c(t−1)
i,· vanishes. This

is a classical trick that has been used for instance by Candès et al. [6] or Chartrand et al. [41]. Note
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Algorithm 6 Majorization-Minimization algorithm leading to iterative reweighted `1 for addressing
Jp≤1,q penalty.

1: Initialize z(1)
i = 1, r = 1− p, t = 1

2: while Loop do
3: C(t) ← solution of problem (1.29)
4: t← t+ 1
5: z

(t)
i ← 1

(‖c(t−1)
i,· ‖q+ε)r

∀i
6: if stopping condition is satisfied then
7: Loop = 0
8: end if
9: end while

that for any positive weight vector z, problem (1.29) is a convex problem that does not present local
minima. Furthermore, for 1 ≤ q ≤ 2, it can be solved by our block-coordinate descent algorithm or by our
M-EMq given in Algorithm 5, by simply replacing λ with λi = λ · zi. This reweighting scheme is similar
to the adaptive lasso algorithm of Zou et al. [62] but uses a larger number of iterations and addresses the
simultaneous approximation problem.

Connections with Majorization-Minimization algorithm

This IrM-BP algorithm can be interpreted as an algorithm for solving an approximation of problem
(1.4) when 0 < p < 1 and 1 ≤ q ≤ 2. Indeed, similarly to the reweighted `1 scheme of Candès et al. [6] or
the one-step reweighted lasso of Zou et al. [63], this algorithm falls into the class of majorize-minimize
(MM) algorithms [27]. MM algorithms consists in replacing a difficult optimization problem with a easier
one, for instance by linearizing the objective function, by solving the resulting optimization problem and
by iterating such a procedure.

The connection between MM algorithms and our reweighted scheme can be made through lineariza-
tion. Let us first define Jp,q,ε(C) as an approximation of the penalty term Jp,q(C) :

Jp,q,ε(C) =
∑
i

g (‖ci,·‖q + ε)

where g(·) = | · |p. Since g(·) is concave for 0 < p < 1, a linear approximation of Jp,q,ε(C) around C(t−1)

yields to the following majorizing inequality

Jp,q,ε(C) ≤ Jp,q,ε(C(t−1)) +
∑
i

p(
‖c(t−1)
i,· ‖q + ε

)1−p (‖ci,·‖q − ‖c(t−1)
i,· ‖q)

then for the minimization step, replacing in problem (1.4) Jp,q with the right part of the inequality and
dropping constant terms lead to our optimization problem (1.29) with appropriately chosen zi and r.
Note that for the weights given in equation (1.30), r = 1 corresponds to the linearization of a log penalty∑
i log(‖ci,·‖+ ε) whereas setting r = 1− p corresponds to a `p penalty (0 < p < 1).
MM algorithms have already been considered in optimization problems with sparsity-inducing penal-

ties. For instance, an MM approach has been used by Figueiredo et al. [18] for solving a least-square
problem with a `p sparsity-inducing penalty, whereas Candès et al. [6] have addressed the problem for
exact sparse signal recovery. In a context of simultaneous approximation, Simila [43, 44] has also consi-
dered MM algorithms while approximating the non-convex penalty with a quadratic term. In the light
of all these previous works, what we have exposed here is merely an extension of iterative reweighted `1
algorithm to simultaneous sparse approximation problem. Through this iterative scheme, we can solve
problem (1.4) with p < 1 and any q provided that we have an algorithm that is able to solve problem
(1.4) with p = 1 and the desired q.

Analyzing the convergence of the sequence C(t) towards the global minimizer of problem (1.4) is a
challenging issue. Indeed, several points make a formal proof of convergence difficult. At first, in order
to avoid a row c

(t)
i,· to be permanently at zero, we have introduced a smoothing term ε, thus we are only

solving a ε-approximation of problem (1.4). Furthermore, the penalty we use is non-convex, thus using
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Algorithm 7 Group bridge Lasso based on Iterative reweighted `1 for addressing Jp≤1,q penalty.

1: Initialize c̃(0), τ = 1−p
p λ−

1
p−1 , t = 1

2: while Loop do
3: z

(t)
i ← τ−p‖c̃(t−1)

gi ‖p1
(

1−p
p

)p
4: c̃(t) ← arg minc̃

1
2‖s̃− Φ̃c̃‖2 +

∑
i(z

(t)
i )1−1/p‖c̃gi‖1

5: t← t+ 1
6: if stopping condition is satisfied then
7: Loop = 0
8: end if
9: end while

a monotonic algorithm like a MM approach which decreases the objective value at each iteration, can
not guarantee convergence to the global minimum of our ε-approximate problem. Hence, due to these
two major obstacles, we have left this convergence proof for future works. Note however that few works
have addressed the convergence issue of reweighted `1 or `2 algorithms for single sparse signal recovery.
Notably, we can mention the recent work of Daubechies et al. [12] which provide a convergence proof of
iterative reweighted least square for exact sparse recovery. In the same flavor, Foucart et al. [20] have
proposed a tentative of rigorous convergence proof for reweighted `1 sparse signal recovery. Although, we
do not have any rigorous proof of convergence, in practice, we will show that the reweighted algorithm
provides good sparse approximations.

As already noted by several authors [6, 41, 12], ε plays a major role in the quality of the solution.
In the experimental results presented below, we have investigated two methods for setting ε : the first
one is to set it to a fixed value ε = 0.001, the other one, denoted as an annealing approach, consists in
gradually decreasing ε after having solved problem (1.29).

Connection with group bridge Lasso

Recently, in a context of variable selection through Group Lasso, Huang et al. [26] have proposed an
algorithm for solving problem (1.5) with p < 1 and q = 1 :

min
c̃

1

2
‖s̃− Φ̃c̃‖2 + λ

∑
i

‖c̃gi‖
p
1. (1.31)

Instead of directly addressing this optimization problem, they have shown that the above problem is
equivalent to the minimization problem :

minc̃,z
1
2‖s̃− Φ̃c̃‖2 +

∑
i
‖c̃gi
‖1

z
1/p−1
i

+ τ
∑
i zi

st. zi ≥ 0 ∀i.
(1.32)

where τ is a regularization parameter. Here equivalence is understood as follows : c̃? minimizes equation
(1.31) if and only if the pair (c̃?, z?) minimizes Equation (1.31) with an appropriate value of τ . This value
of τ will be made clear in the sequel.

The connection between iterative reweighted `1 approach and the algorithm proposed by Huang et
al. comes from the way problem (1.32) has been solved. Indeed, Huang et al. have considered a block-
coordinate approach which consists in minimizing the problem with respects to z and then, after having
plugged the optimal z in the equation (1.32) in minimizing the problem with respects to c̃. For the first
step, the optimal z is derived by minimizing the convex problem

minz

∑
i
‖c̃gi
‖1

z
1/p−1
i

+ τ
∑
i zi

st. zi ≥ 0 ∀i.
(1.33)

Using Lagrangian theory, simple algebras yield to a closed-form solution of the optimal z :

z?i = τ−p‖c̃gi‖
p
1

(
1− p
p

)p
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Plugging these zi’s in Equation (1.32) and using τ such that λ =
(

1−p
pτ

)p−1

proves the equivalence of the
problems (1.31) and (1.32). The relation with iterative reweighted `1 is made clear in the second step of
the block-coordinate descent. Indeed, in problem (1.32), since we only optimize with respects to c̃ with
fixed zi, this step is equivalent to

minc̃
1
2‖s̃− Φ̃c̃‖2 +

∑
i
‖c̃gi
‖1

z
1/p−1
i

(1.34)

which is clearly a weighted `1 problem. The full iterative reweighted algorithm is detailed in Algorithm
(7). Note that although the genuine work on Group bridge Lasso only addresses the case q = 1 (because
of theoretical developments considered in the paper), the algorithm proposed by Huang et al. can be
applied to any choice of q provided that one is able to solve the related `1 − `q problem (for instance
using the algorithm described in Section 1.3).

1.4 Specific case algorithms
In this section, we survey some algorithms that provide solutions of the SSA problem (1.4) when

p = 0. These algorithms are different in nature and provide different qualities of approximation. The first
two algorithms we detail are greedy algorithms which have the flavor of Matching Pursuit [33]. The third
one is based on a sparse bayesian learning and is related to iterative reweighted `1 algorithm.

1.4.1 S-OMP
Simultaneous Orthogonal Matching Pursuit (S-OMP) [53] is an extension of the Orthogonal Matching

Pursuit [37, 52] algorithm to the multiple approximation problem.
S-OMP is a greedy algorithm which is based on the idea of selecting, at each iteration, an element

of the dictionary and on building all signal approximations as the projection of the signal matrix S on
the span of these selected dictionary elements. Since, according to problem (1.2), one looks for a for
dictionary elements that can simultaneously provide good approximation of all signals, Tropp et al. have
suggested to select the dictionary element that maximizes the sum of absolute correlation between the
basis element and the signal residuals. This greedy selection criterion is formalized as follows :

max
i

L∑
k=1

|〈sk − P (t)(sk),Φi〉|

where P (t)(·) is the projection operator on the span of the t selected dictionary elements. While concep-
tually very simple, this algorithm which details are given in Algorithm (8), provide theoretical guarantees
about the quality of its approximation. For instance, Tropp et al. [53] have shown that if the algorithm
is stopped when T dictionary elements have been selected then, under some mild conditions on the ma-
trix Φ, there exists a upper bound on ‖S−ΦC(T )‖F . This upper bound depends on ‖S−ΦC?‖F with
C? being the solution of problem (1.2) and multiplicative constant which is a function of T, L and the
coherence of Φ [53]. In this sense, S-OMP can be understood as an algorithm that approximately solves
problem (1.4) with p = 0.

1.4.2 M-CosAmp
Very recently, Needell and al. have developed a novel signal reconstruction algorithm known as Co-

sAmp [35]. This algorithm uses ideas from orthogonal matching pursuit but also takes advantage of ideas
from the compressive sensing literature. This novel approach provides stronger theoretical guarantees on
the quality of signal approximation. The main particularities of CosAmp are the following. Firstly, unlike
Orthogonal matching pursuit, CosAmp selects many elements of the dictionary at each iteration, the ones
that have the largest correlation with respects to the signal residual. These novel dictionary elements are
thus incorporate into the set of current dictionary elements. The other specificity of CosAmp is a pru-
ning dictionary element step after signal estimation. This step is justified by the fact that the signal to
approximate is supposed to be sparse.

This CosAmp algorithm have been extended so as to handle signals with specific structures such as
block sparse signal Extension to jointly sparse approximation has also been provided by Duarte et al.
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Algorithm 8 S-OMP algorithm. T number of dictionary elements to select
1: Initialize : t← 0,R(t) ← S,Ω← ∅,Loop← 1
2: while Loop do
3: E , ΦtR(t)

4: i← arg maxk
∑
j |ej,k|

5: Ω← Ω ∪ i
6: t← t+ 1
7: C(t) ← (Φt

ΩΦΩ)−1Φt
ΩS

8: R(t) = S−ΦC(t)

9: if t= T then
10: Loop = 0
11: end if
12: end while

Algorithm 9 M-CosAmp algorithm. T number of dictionary elements to select.
1: Initialize C(0) = 0, Loop←,R(t) = S,Ωres ← ∅
2: while Loop do
3: E , ΦtR(t)

4: ei = ‖Ei,.‖22 i = 1, · · · ,M
5: Ωres ← supp(e, 2T )
6: Ω← Ω ∪ Ωres
7: Ĉ← (Φt

ΩΦΩ)−1Φt
ΩS

8: vi = ‖ci,.‖22 i = 1, · · · ,M
9: Ω← supp(v, T )

10: t← t+ 1
11: C(t) = 0
12: C

(t)
Ω = ĈΩ

13: R(t) = S−ΦC(t)

14: if stopping condition is satisfied then
15: Loop = 0
16: end if
17: end while

[13]. Such an extension of the CosAmp algorithm to simultaneous sparse approximation is detailed in
Algorithm 9. Note that lines 4-5 of the algorithm estimate the dictionary elements which have the largest
correlations over all the signals while lines 8-9 prune the set of current dictionary elements so as to keep
the matrix C row-sparse. This algorithm is denoted as M-CosAmp in the experimental section.

1.4.3 Sparse Bayesian Learning and Reweighted algorithm
The approach proposed by Wipf et al. [59], denoted in the sequel as Multiple-Sparse Bayesian Learning

(M-SBL), for solving the sparse simultaneous approximation is somewhat related to the optimization
problem in equation (1.4) but from a very different perspective. Indeed, if we consider that the approaches
described in Section 1.3 are equivalent to a Maximum a Posteriori estimation procedures, then Wipf et al.
have explored a Bayesian model which prior encourages sparsity. In this sense, their approach is related to
the relevance vector machine of Tipping et al. [50]. Algorithmically, they proposed an empirical bayesian
learning approach based on Automatic Relevance Determination (ARD). The ARD prior over each row
they have introduced is

p(ci,·; di) = N (0, diI) ∀i

where d is a vector of non-negative hyperparameters that govern the prior variance of each coefficient
matrix row. Hence, these hyperparamaters aim at catching the sparsity profile of the approximation.
Mathematically, the resulting optimization problem is to minimize according to d the following cost
function :

L log |Σt|+
L∑
j=1

stjΣ
−1
t sj (1.35)
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where Σt = σ2I + ΦDΦt, D = diag(d) and σ2 a parameter of the algorithm related to the noise level
presented in the signals to be approximated. The algorithm is then based on a likelihood maximiza-
tion which is performed through an Expectation-Minimization approach. Very recently, a very efficient
algorithm for solving this problem has been proposed [28]. However, the main drawback of this latter
approach is that due to its greedy nature, and as any EM algorithm where the objective function is not
convex, the algorithm can be easily stuck in local minima.

Recently, Wipf et al. [56] have proposed some new insights on Automatic Relevance Determination
and Sparse Bayesian Learning. They have shown that, for the vector regression case, ARD can be achie-
ved by means of iterative reweighted `1 minimization. Furthermore, in that paper, they have sketched an
extension of such results for matrix regression in which ARD is used for automatically selecting the most
relevant covariance components in a dictionary of covariance matrices. Such an extension is more related
to learning with multiple kernels in regression as introduced by Girolami et al. [22] or Rakotomamonjy et
al. [39] although some connections with simultaneous sparse approximation can be made. Here, we build
on the works on Wipf et al. [56] and give all the details about how M-SBL and iterative reweighted M-BP
are related.

Recall that the cost function minimized by the M-SBL of Wipf et al. [59] is

L(d) = L log |Σt|+
L∑
j=1

stjΣ
−1
t sj (1.36)

where Σt = σ2I+ΦDΦt and D = diag(d), with d being a vector of hyperparameters that govern the prior
variance of each coefficient matrix row. Now, let us define g?(z) as the conjugate function of the concave
log |Σt|. Since, that log function is concave and continuous on RM+ , according to the scaling property of
conjugate functions we have [5]

L · log |Σt| = min
z∈RM

ztd− Lg?
( z

L

)
Thus, the cost function L(d) in equation (1.36) can then be upper-bounded by

L(d, z) , ztd− Lg?
( z

L

)
+

L∑
j=1

stjΣ
−1
t sj (1.37)

Hence when optimized over all its parameters, L(d, z) converges to a local minima or a saddle point of
(1.36). However, for any fixed d, one can optimize over z and get the tight optimal upper bound. If we
denote as z? such an optimal z for any fixed d†, since L · log |Σt| is differentiable, we have, according to
conjugate function properties, the following closed form of z?

z? = L · ∇ log |Σt|(d†) = diag(ΦtΣ−1
t Φ) (1.38)

Similarly to what proposed by Wipf et al., Equations (1.37) and (1.38) suggest an alternate optimization
scheme for minimizing L(d, z). Such a scheme would consist, after initialization of z to some arbitrary
vector, in keeping z fixed and in computing

d† = argmin
d
Lz(d) , ztd +

L∑
j=1

stjΣ
−1
t sj (1.39)

then to minimize L(d†, z) for fixed d†, which can be analytically done according to equation (1.38). This
alternate scheme is then performed until convergence to some d?.

Owing to this iterative scheme proposed for solving M-SBL, we can now make clear the connection
between M-SBL and an iterative reweighted M-BP according to the following lemma. Again this is an
extension to the multiple signals case of a Wipf’s lemma.

Lemma 2 The objective function in equation (1.39) is convex and can be equivalently solved by computing

C? = argmin
C
Lz(C) =

1

2
‖S−ΦC‖2F + σ2

∑
i

z
1/2
i ‖ci,·‖ (1.40)
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and then by setting
di = z

−1/2
i ‖c?i,·‖ ∀i

Proof 3 Convexity of the objective function in equation (1.39) is straightforward since it is just a sum
of convex functions [4]. The key point of the proof is based on the equality

stjΣ
−1
t sj =

1

σ2
min
c·,j
‖sj −Φc·,j‖22 +

∑
i

c2i,j
di

(1.41)

which proof is given in the appendix. According to this equality, we can upper-bound Lz(d) with

Lz(d,C) = ztd +
∑
j

1

σ2
‖sj −Φc·,j‖22 +

∑
i,j

c2i,j
di

(1.42)

The problem of minimizing Lz(d,C) is smooth and jointly convex in its parameters C and d and thus
an iterative coordinate-wise optimization scheme (iteratively optimizing over d with fixed C and then
optimizing over C with fixed d ) yields to the global minimum. It is easy to show that for any fixed C,
the minimal value of Lz(d,C) with respects to d is achieved when

di = z
−1/2
i ‖ci,·‖ ∀i

Plugging these solutions back into (1.42) and multiplying the the resulting objective function with σ2/2
yields to

Lz(C) =
1

2

∑
j

‖sj −Φc·,j‖22 + σ2
∑
i

z
1/2
i ‖ci,·‖ (1.43)

Making the relation between `2 and Frobenius norms concludes the proof.

Minimizing Lz(C) boils down to minimize the M-BP problem with an adaptive penalty λi = σ2 · z1/2
i

on each row-norm. This latter point makes the alternate optimization scheme based on equation (1.38)
and (1.39) equivalent to our iterative reweighted M-BP for which weights zi would be given by equation
(1.38).

The impact of this relation between M-SBL and iterative reweighted M-BP is essentially methodolo-
gical. Indeed, its main advantage is that it turns the original M-SBL optimization problem into a serie
of convex optimization problems. In this sense, the iterative reweighted algorithm described here, can
again be viewed as an application of MM approach for solving problem (1.36). Indeed, we are actually
iteratively minimizing a proxy function which has been obtained by majorizing each term of equation
(1.36). Owing to this MM point of view, convergence of our iterative algorithm towards a local minimum
of equation (1.36) is guaranteed [27]. Convergence for the single signal case using other arguments has
also been shown by Wipf et al. [56]. Note that similarly to M-FOCUSS, the original M-SBL algorithm
based on EM approach suffers from presence of fixed points (when di = 0). Hence, such an algorithm
is not guaranteed to converge towards a local minimum of (1.36). This is then another argument for
preferring IrM-BP.

1.5 Numerical experiments
Some computer simulations have been carried out in order to evaluate the algorithms proposed in the

above sections. Results that have been obtained from these numerical studies are detailed in this section.

1.5.1 Experimental set-up
In order to quantify the performance of our algorithms and compare them to other approaches, we

have used simulated datasets with different redundancy factors M
N , number k of active elements and

number L of signals to approximate. The dictionary Φ is based on M vectors sampled from the unit
hypersphere of RN . The true coefficient matrix C? has been obtained as follows. The positions of the k
non-zero rows in the matrix are randomly drawn. The non-zero coefficients of C? are then drawn from
a zero-mean unit variance Gaussian distribution. The signal matrix S is obtained as in equation (1.1)
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Figure 1.1 – Examples of objective value evolution with respects to computational time. Here we have,
M = 128, N = 64, L = 3. The number of active elements is : left) k = 5. right) k = 32. For each curve,
the large point corresponds to the objective value at convergence.

with the noise matrix being drawn i.i.d from a zero-mean Gaussian distribution and variance so that the
signal-to-noise ratio of each single signal is 10 dB. For a given experiment, when several trials are needed,
we only resample the dictionary Φ and the additive noise E .

Each algorithm is provided with the signal matrix S and the dictionary Φ and will output an estimate
of C. The performance criterion we have considered are the mean-square error between the true and the
approximate signals and the sparsity profile of the coefficient matrix that has been recovered. For the
latter, we use as a performance criterion the F-measure between the row-support of the true matrix C?

and the estimate one Ĉ. In order to take into account numerical precisions, we have overloaded the row
support definition as :

rowsupp(C) = {i ∈ [1 · · · M ] : ‖ci,·‖ < µ}

where µ is a threshold coefficient that has been set by default to 0.01 in our experiments. From rowsupp(Ĉ)
and rowsupp(C?) respectively the estimated and true sparsity profile, we define :

F-measure = 2 · |rowsupp(Ĉ) ∩ rowsupp(C?)|
|rowsupp(Ĉ)|+ |rowsupp(C?)|

.

Note that the F-measure is equal to 1 when the estimated sparsity profile coincides exactly with the true
one.

Regarding the stopping criterion, in the experiments presented below, we have considered convergence
of our M-BCD algorithm when the optimality conditions given in equation (1.11) are satisfied up to a
tolerance of 0.001 and when all matrix coefficient ci,j variations are smaller than 0.001. This latter
condition has also been used as a stopping criterion for the Landweber iteration, M-EM, IrM-BP, M-
FOCUSS and M-SBL algorithms. When the annealing approach is in play for IrM-BP and M-FOCUSS,
the annealing loop is also stopped under the same condition e.g maxi,j |C(t+1)

i,j − C(t)
i,j | < 0.001 where (t)

and (t+ 1) denotes two consecutive annealing solution.

1.5.2 Comparing `1 − `2 M-BP problem solvers
In this first experiment, we have compared different algorithms which solves the M-BP problem with

p = 1 and q = 2. Besides our M-BCD and M-EM algorithms, we have also used the M-FOCUSS of Cotter
et al. [10] and the approach of Fornasier et al. [19] based on Landweber iterations and denoted in the
sequel as M-BPLand. Note that for M-FOCUSS, we have modified the genuine algorithm by introducing
a ε parameter, set to 0.001, which helps in avoiding a row-norm of C to be permanently at 0. For all
compared problems, regularization parameter λ has been so as to make the problem equivalent. In this
experiment, we have set λ = 1

5 maxi ‖φtiS‖2 for problem (1.10).
Figure 1.1 shows two examples of how the objective value of the different algorithms evolves with

respects to computational time. We can note that the two iterative reweighted least-square algorithms
(M-EM and M-FOCUSS) are the most computationally demanding. Furthermore, we also see that the
Landweber iteration approach of Fornasier et al. quickly reduces its objective value but compared to our
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Table 1.1 – Summary of M-BP solvers comparison. Comparisons have been carried out for two values
of k, the number of active elements in the dictionary and have been averaged over 100 trials. Compari-
son measures are the time needed before convergence, the difference in objective value and the largest
coefficient matrix difference. For the two latter measure, the baseline algorithm is considered to be the
M-BCD one.

k=5
Time (ms) ∆ ObjVal (10−3) ‖∆C‖∞(10−3)

M-BCD 4.2± 2.7 - -
M-EM 57.2± 11.7 2.6± 2.2 0.8± 1.0
M-Focuss 24.1± 4.2 3.6± 1.8 16.6± 1.0
M-BPLand 7.5± 1.3 5.3± 1.1 0.04± 1.1

k=32
Time (ms) ∆ ObjVal (10−3) ‖∆C‖∞(10−3)

M-BCD 11.5± 2.87 - -
M-EM 130.9± 17.0 23.1± 5.9 15.4± 8.0
M-Focuss 60.0± 6.2 28.8± 5.8 38.8± 5.4
M-BPLand 14.1± 2.7 16.9± 3.8 0.41± 3.8

M-BCDmethod, it needs more time before properly converging. Table 1.1 summarizes more accurately the
difference between the four algorithms. These results have been averaged over 100 trials and consider two
values of k. As comparison criteria, we have considered the computational time before convergence, the
difference (compared to the M-BCD algorithm) in objective values and the maximal absolute difference
in the coefficient matrix ci,j . The table clearly shows that the M-BCD algorithm is clearly faster than
M-BPLand (especially when signals to approximate are highly sparse) and the two iterative reweighted
least-square approaches. We can also note from the table that, although M-FOCUSS and our M-EM are
not provided with a formal convergence proof, these two algorithms seem to empirically converge to the
problem global minimum.

1.5.3 Computational performances
We have also empirically assessed the computational complexity of our algorithms (we used s = 0.2,

thus q = 5
3 for M-EM and r = 1 for IrM-BP). We varied one of the different parameters (dictionary sizeM ,

signal dimensionality N) while keeping the others fixed. All matrices Φ, C and S are created as described
above. Experiments have been run on a Pentium D-3 GHz with 4 GB of RAM using Matlab code. The
results in Figure 1.2, averaged over 20 trials, show the computational complexity of the different algorithms
for different experimental settings. Note that we have also experimented on the M-SBL computational
performances owing to the code of Wipf et al. [59] and have implemented the M-FOCUSS of Cotter et
al. [10], the CosAmp block-sparse approach of Baraniuk et al. [] and the Landweber iteration method of
Fornasier et al. [19] 3. All algorithms need one hyperparameter to be set, for M-SBL and CosAmp, we
were able to choose the optimal one since the hyperparameter respectively depends on a known noise
level and a known number of active elements in the dictionary. For other algorithms, we have reported
the computational complexity for the λ that yields to the best sparsity recovery. Note that our aim here
is not give an exact comparison of computational complexity of the algorithms but just to give an order of
magnitude of these complexities. Indeed, accurate comparisons are difficult since the different algorithms
do not solve the same problem and do not use the same stopping criterion.

We can remark in Figure 1.2 that with respects to the dictionary size, all algorithms present an
empirical exponent between 1.3 and 2.7. Interestingly, we have theoretically evaluate the complexity of
the M-BCD algorithm as quadratic whereas we measure a sub-quadratic complexity. We suppose that
this happens because at each iteration, only the non-optimal ci,·’s are updated and thus the number of
updates drastically reduces along iterations. We can note that among all approaches that solve the `1−`q
problem (left plots), M-BCD, Landweber iteration approach and M-CosAmp have similar complexity

3. All the implementations are included in the toolbox.
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Figure 1.2 – Estimating the empirical exponent, given in parenthesis, of the computational complexity
of different algorithms (M-BCD, IrM-BP, M-SBL, M-FOCUSS, CosAmp, Landweber iterations). The top
plots give the computation time of the algorithms with respects to the dictionary size. The bottom plots
respectively depict the computational complexity with respects to the signal dimensionality. For a sake
of readability, we have separated the algorithms in two groups :(left) the ones that solve `1− `q problem.
(right) the ones that solve `p−`2 problem (M-BCD result provided for baseline comparison). The “IrM-BP
Ann” and “M-FOC Ann” refers to the Ir-MBP and M-FOCUSS algorithm using an annealing approach
for iteratively decreasing ε as described in Algorithm (??).

with a slight advantage to M-BCD for large dictionary size. However, we have to note that the M-
CosAmp algorithm sometimes suffers from lack of convergence and thus stop only when the maximal
number of allowed iterations is reached. This is the reason why for large dictionary size M-CosAmp is
computationally expensive. However, for small and medium dictionary size, M-CosAmp is slighly more
efficient than M-BCD. When considering the algorithms that solve the `p− `2 problem (right plots), they
all have similar complexity, with a slightly better constant for IrM-BP while M-SBL seems to be the most
demanding algorithm.

Bottom plots of Figure 1.2 depicts the complexity dependency of all algorithms with respects to
signal dimension N . Interestingly, the results show that except for M-SBL and M-FOCUSS algorithms,
all algorithms do not suffer from the signal dimension increase. We assume that this is due to the fact
that as dimension increases, the approximation problem becomes easier and thus faster convergence of
those algorithms occurs.
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Figure 1.3 – Results comparing performances of different simultaneous sparse algorithms. We have varied
(top) the number k of active elements in the dictionary. (middle) the dictionary size M and (bottom) the
number of signal to approximate L. On the left columns are given the F-measure of all methods while
the average mean-square errors are on the right column.

1.5.4 Comparing performances
The objective of the next empirical study is to compare the performances of the algorithms we

surveyed : M-SBL, M-CosAmp, Landweber iterations, S-OMP, M-FOCUSS with an annealing decreasing
of ε, the M-BCD algorithm and the IrM-BP approach with two values of p and an annealing decrease of
ε.

The baseline experimental context is M = 128, N = 64, k = 10 and L = 3. For this experiment, we
have considered an agnostic context with no prior knowledge about the noise level being available. Hence,
for all models, we have performed model selection (either for selecting λ, the noise level σ for M-SBL or
the number of elements for M-CosAmp and S-OMP). Model selection procedure is the following. Training
signals S are randomly splitted in two parts of N/2 samples. Each algorithm is then trained on one part of
the signal and the mean-square error of the resulting model is evaluated on the second part. This splitting
and training is run 5 times and the hyperparameter yielding to the minimal averaged mean-square error
is considered as optimal. Each method is then run on the full signals with that parameter. Performances,
averaged over 50 trials of all methods have been evaluated according to the F-measure and a mean-square
error computed on 10000 samples.

Figure 1.3 shows, from top to bottom, these performances when k increases from 2 to 40, whenM goes
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Figure 1.4 – Examples of estimated row-norm using 3 different algorithms. left) M = 128, N = 64,
k = 10 and L = 3. right) M = 64, N = 64, k = 10 and L = 3. Here, we want to illustrate cases where a
“good” sparsity recovery does not necessary lead to low mean-square error.

from 64 to 256 and when L = 2, · · · , 7. When varying k, we can note that across the range of variation,
our IrM-BP method with p = 0 is competitive compared to all other approaches both with respects to
the F-measure and the mean-square error criterion. When k increases, IrM-BP and M-FOCUSS with
p = 0.5 perform also very good. This may be explained by the fact that as k increases, the optimal
solution becomes less and less sparse thus the need for a less aggressive penalty. CosAmp and S-OMP are
very competitive for small k but as soon as the latter increases these two methods are not able anymore
to recover a “reasonable” sparsity pattern. Interestingly, we remark that M-SBL yields to a poor sparsity
recovery measure while the resulting model achieves good mean-square error. A reason for this is that the
model selection procedure tends to under-estimate the noise level and thus it leads to a model which keeps
many spurious dictionary elements as illustrated in Figure 1.4 and detailed in the sequel. From Figure
1.3, we can also notice that the two M-BP solvers, our M-BCD and the Landweber iteration approach
perform poorly compared to other methods. However, the Fornasier’s method seems to be less sensitive
to noise and model selection since it provides a better sparsity pattern recovery. It is worth noting that
M-SBL and these two latter methods always correctly select all the true dictionary elements but they
also have the tendency to include other spurious ones.

In the middle and bottom plots, similar behavior as above can be highlighted. M-CosAmp yields to
very good sparsity recovery while the resulting mean-square error is rather poor. Again our IrM-BP with
p = 0 yields the best mean-square error while providing a good sparsity pattern recovery. M-SBL and M-
BCD keeps too many spurious dictionary elements. All other methods provide in-between performances
both in term of F-measure and mean-square error.

Figure 1.4 illustrates the behaviour of M-CosAmp, M-SBL and the IrM-BP with p = 0 for two different
experimental situations. On the left plot, we have a case where on one hand, M-CosAmp misses to recover
the first active dictionary element yielding thus to high mean-square error. On the other hand, M-SBL
achieves lower mean-square error while keeping few spurious dictionary elements in the model. In the
meantime, IrM-BP recovers perfectly the sparsity pattern and yields to low mean-square error. In the
right plot, we have another case where M-CosAmp achieves perfect sparsity recovery but provides a model
with higher mean-square error than IrM-BP.

In most of the experimental situations presented here, M-CosAmp and the IrM-BP seems to be the
two algorithms that perform the best, with however a slight advantage for the IrM-BP. These two methods
are actually related since both approaches solve a simultaneous sparse approximation with a J0,2(C) pe-
nalty. The main difference lies in the algorithms since our IrM-BP owing to the ε term provides a smooth
approximation of the `0 quasi-norm whereas M-CosAmp directly solves the approximation problem with
the J0,2(C) penalty.

To summarize, we suggest the following rule : in applications where computational complexities are
critical and where signals to be approximated are highly sparse, M-CosAmp is to be preferred. In other
situations, IrM-BP should be used.
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1.6 Conclusions
This paper aimed at surveying and comparing different simultaneous sparse signal approximation

algorithms available in the statistical learning and signal processing communities.
These algorithms usually solve a relaxed version of an intractable problem where the relaxation is

based on sparsity-inducing mixed norm on the coefficient approximation. In the first part of the paper,
we have described several algorithms which addresses the most common SSA problem which is a convex
problem with a `1 − `2 penalty function. For other choices of penalty, one usually considers iterative
reweighted algorithms. These algorithms have been detailed in a second part of the paper. We have also
brought our attention on greedy algorithms such as S-OMP or M-CosAmp since they have both have the
abilities to be very efficient and to provide theoretical guarantees on the quality of their solutions.

The last part of the paper is devoted to experimental comparisons of the different algorithms we
surveyed. The lesson learned from these comparisons is that the two algorithms that seem to be the best
performing either in terms of efficiency, sparsity recovery or low mean-square error are the M-CosAmp
or an iterative reweighted `1 approach.

1.7 Appendix

1.7.1 J1,2(C) subdifferential
By definition, a matrix G lies in ∂J1,2(B) if and only if for every matrix Z, we have

J1,2(Z) ≥ J1,2(B) + 〈Z−B,G〉F (1.44)

If we expand this equation we have the following equivalent expression∑
i

‖zi,·‖2 ≥
∑
i

‖bi,·‖2 +
∑
i

〈zi,· − bi,·, gi,·〉 (1.45)

From this latter equation, we understand that, since both J1,2 and the Frobenius inner product are row-
separable, a matrix G ∈ ∂J1,2(B) if and only if each row of G belongs to the subdifferential of the `2
norm of the corresponding row of B.

Indeed, suppose that G is so that any row of G belongs to the subdifferential of the `2 norm of the
corresponding row of B. We thus have for any row i

∀z, ‖z‖2 ≥ ‖bi,·‖2 + 〈z − bi,·, gi,·〉 (1.46)

A summation over all the rows then proves that G satisfies equation (1.45) and thus belongs to the
subdifferential of J1,2(B).

Now, let us show that a matrix G for which there exists a row that does not belong to the subdifferential
of the `2 norm of the corresponding row of B can not belong to the subdifferential of J1,2(B). Let us
consider gi,· the i-th row of G, since we have supposed that gi,· /∈ ∂‖bi,·‖2, the following equation holds

∃z0 st. ‖z0‖2 < ‖bi,·‖2 + 〈z− bi,·, gi〉

Now let us construct Z so that Z = B except for the i-th row where zi,· = z0. Then it is easy to show
that this matrix Z does not satisfy equation (1.45), which means that G does not belong to ∂J1,2(B).
In conclusion, we get ∂J1,2(B) by applying the `2 norm subdifferential to each row of B. And it is well
known [4] that

∂‖b‖2 =

{
{g ∈ RL : ‖g‖2 ≤ 1} if b = 0

b
‖b‖2 otherwise (1.47)

1.7.2 Proof of Lemma 2
We aim at proving that

min
d

∑
t,k

|at,k|2

dt,k
: dt,k ≥ 0,

∑
k

(∑
t

d
1/s
t,k

) s
r+s

≤ 1

 =

∑
k

(∑
t

|at,k|q
) p

q

 2
p
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where q = 2
s+1 and p = 2

s+r+1 . The proof proceeds by writing the Lagrangian of the optimization
problem :

L =
∑
t,k

|at,k|2

dt,k
+ λ

∑
k

(∑
t

d
1/s
t,k

) s
r+s

− 1

−∑
t,k

νt,kdt,k

where λ and {νt,k} are the Lagrangian multipliers associated to the inequality constraint and the positivity
constraints on dt,k. By deriving the first-order optimality conditions, we get :

∂L
∂dm,n

= −|am,n|
2

d2
m,n

− νm,n +
λs

r + s

(∑
t

d
1/s
t,n

) −r
r+s

· 1

s
· d

1−s
s

m,n

According to these optimality conditions, at a stationary point, we have either dm,n = 0 or

dm,n =

(
λ

r + s

)−s/(s+1)

|am,n|2s/(s+1)

(∑
t

d
1/s
t,n

)rs/[(r+s)(s+1)]

(1.48)

Then, we can derive(∑
m

d1/s
m,n)

)(s+1)

=

(
r + s

λ

)(∑
m

|am,n|2/(s+1)

)s+1(∑
m

d1/s
m,n

)r/(r+s)
(1.49)

and thus (∑
m

d1/s
m,n)

)s
=

r + s

λ

(∑
m

|am,n|2/(s+1)

)s+1
(r+s)/(r+s+1)

(1.50)

As λ 6= 0, the inequality on the mixed-norm on dt,k becomes an equality. Hence, after powering each side
of Equation (1.50) to 1/(r + s) and summing each side over n, we have :

λ

r + s
=

(∑
n

g(s+1)/(r+s+1)
n

)r+s+1

(1.51)

where gn =
∑
m |am,n|2/(s+1). Then, plugging equations (1.51) and (1.50) into (1.48) gives the desired

result :

dm,n =
|am,n|

2s
s+1 g

r
s+r+1
n(∑

n g
s+1

s+r+1
n

)r+s (1.52)

1.7.3 Proof of equation (1.41)
We want to show that at optimality which occurs at C?, we have

stjΣ
−1
t sj =

1

σ2
stj(sj −ΦC?)

which is equivalent, after factorizing with st, to show that

σ2sj = Σtsj − ΣtΦC?

This last equation can be proved using simple algebra

Σtsj − ΣtΦC = σ2sj + ΦDΦts− (σ2I + ΦDΦt)ΦC?

= σ2sj + ΦDΦts−Φ(σ2I +DΦtΦ)C?

= σ2sj + ΦDΦts−ΦDΦts

= σ2sj
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Chapitre 2

Factorisation de très grandes matrices
creuses pour la classification croisée

2.1 Modélisation
On dispose d’une matrice A de n lignes et p colonnes. Notre but est de trouver deux matrices ortho-

gonales U et V qui minimisent

‖A− UV ‖ − F 2 =
∑
i

∑
j

(aij − u>i vj)
2

Nous allons supposer cette matrice A est à valeurs dans {0, 1} avec Aij = 1 si le client i a acheté l’article
j et Aij = 0 sinon. Une manière de modéliser ce phénomène consiste à poser un modèle de Bernoulli de
paramètre naturel θij sur chaque terme aij de la matrice, vu comme la réalisation d’une variable aléatoire
Aij de probabilité Pij

Pij = IP(Aij = 1) =
expθij

1 + expθij
et IP(Aij = aij) =

expaijθij

1 + expθij

C’est le modèle de l’analyse en composante principale logistique proposé par [2]. Dans ce modèle, θij est
le paramètre fondamental qui représente l’appétence du client i pour le produit j. la variable aléatoire
Xij est donc liée au « passage à l’acte » du client i sur le produit j. Quand θij est grand, la probabilité
d’achat (le passage à l’acte) est proche de un alors que quand θij tend vers moins l’infini la probabilité
d’achat tend vers zéro. A la matrice d’achat A sont associées deux autres matrices de même taille : la
matrice P des probabilités d’achat et la matrice Θ des scores d’appétence.

L’hypothèse fondamentale concerne la structure de la matrice d’appétence. Nous allons supposer que
cette matrice est structurée autour de variables non observables (cachées ou latentes) qui représentent un
certain nombre k de profils type. Ces profils sont des vecteurs U•κ et V•κ qui caractérisent respectivement
l’appétence des utilisateurs pour un produit type et l’appétence d’un client type pour tous les produits.
A partir de ces profils, l’appétence d’un client i pour un produit j s’écrit comme une combinaison des
différents profils, soit :

θij =

k∑
κ=1

UiκVjκ = Ui•V
>
j• et θi• =

k∑
κ=1

UiκV
>
•κ , θ•j =

k∑
κ=1

U•κV
>
jκ

L’estimation des paramètres U et V peut s’obtenir grâce au principe du maximum de vraisemblance qui,
si l’on fait l’hypothèse discutable d’indépendance des données, s’écrit :

max
U,V

n∏
i

p∏
j

expaijUi•V
>
j•

1 + expUi•V >j•
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en prenant le logarithme et en changeant le signe on obtient la fonction score à minimiser :

min
U,V

S(U, V ) avec S(U, V ) =

n∑
i

p∑
j

−aijUi•V >j• + log
(
1 + expUi•V

>
j•
)

Une façon de résoudre ce problème de minimisation consiste à utiliser une approche de relaxation de type
EM (expectation maximization) et de résoudre itérativement le problème de minimisation en U à V fixé
puis le problème de minimisation en V à U fixé. Nous allons étudier le problème de minimisation en V à
U fixé en suivant [1]. Dans ce cas le gradient de la fonction score s’écrit :

∇Vj• S(U, V ) =

n∑
i=1

−Ui•aij + Ui•
expUi•V

>
j•

1 + expUi•V >j•
=

n∑
i=1

(Pij − aij)Ui•

de même :

∇Ui• S(U, V ) =

p∑
j=1

(Pij − aij)Vj•

Soit H la hessienne de S(U, V ) et X ∈ R(n+p)×k. X est de même taille qu’une matrice de la forme(
U
V

)
.

H : R(n+p)×k 7−→ R(n+p)×k

X 7−→ H(X)

Ainsi H ∈ R(n+p)2×k2 . La Hessienne est en 4 partie :

H =

(
∇2
US ∇U∇V S

∇V∇US ∇2
V S

)
Calculons chaque partie indépendamment.

∇Vj2•
∇Vj1•

S(U, V ) = ∇Vj2•
[

n∑
i=1

(Pij1 − aij1)Ui•]

=


n∑
i=1

U>i•Pij1(1− Pij1)Ui• si i1 = i2

0 si i1 6= i2

∇2
Vj•

S(U, V ) =

n∑
i=1

U>i•Pij(1− Pij)Ui•

= U>WVj•U

avec WVj•(i, i) = Pij(1− Pij) pour tout i.

∇2
Ui•

S(U, V ) =

p∑
j=1

V >j•Pij(1− Pij)Vj•

= V >j•WUi•Vj•

avec WUi•(j, j) = Pij(1− Pij) pour tout j. Notons que WVj• ∈ Rn×n et WUi• ∈ Rp×p.

∇Vj•∇Ui• S(U, V ) = ∇Vj• [

n∑
i=1

(Pij − aij)Vj•]

=
U>i•e

Ui•V
>
j• (1 + eUi•V

>
j• )− U>i•eUi•V

>
j•eUi•V

>
j•

(1 + eUi•V >j• )2
Vj• + (Pij − aij)Ik

= U>i•Pij(1− Pij)Vj• + (Pij − aij)Ik
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où Ik est la matrice identité de taille k × k.

∇Ui•∇Vj• S(U, V ) = ∇Ui• [

p∑
j=1

(Pij − aij)Ui•]

= V >j•Pij(1− Pij)Ui• + (Pij − aij)Ik

Ainsi pour résumé :

∇2
Ui•

S(U, V ) = V >j•WUi•Vj• (2.1)

∇2
Vj•

S(U, V ) = U>i•WVj•Ui• (2.2)

∇Vj•∇Ui• S(U, V ) = U>i•Pij(1− Pij)Vj• + (Pij − aij)Ik (2.3)

∇Ui•∇Vj• S(U, V ) = V >j•Pij(1− Pij)Ui• + (Pij − aij)Ik (2.4)

Nous choisissons de réduire l’expression de la matrice hessienne aux équations numéro 1 et 2. Une
itération de l’algorithme de Newton appliqué à ce problème s’écrit alors en partant du vecteur V old

•j :

V new
j• = V old

j• − (U>WVj•U)−1U>(P•j −A•j)
= (U>WVj•U)−1

(
(U>WVj•U)V old

j• − U>(P•j −A•j)
)

= (U>WVj•U)−1U>WVj•(UV
old
•j −W−1

Vj•
(P•j −A•j))

= (U>W
1
2>
Vj•

W
1
2

Vj•
U)−1U>W

1
2>
Vj•

zVj•

= (W
1
2

Vj•
U)† zVj•

où M
1
2>
ij =

√
Mij pour tout i et j.

avec zVj• = W
1
2

Vj•
UV old

•j −W
− 1

2

Vj•
(P•j −A•j).

Algorithm 10 Factorisation Binomiale
Require: U ∈ Rn×k, V ∈ Rp×k
1: while not convergent do
2: for all i and j do

3: Pij ← e
Ui•V

>
j•

1+e
Ui•V>j•

4: end for
5: for i = 1 to n do
6: Unewi• ← (W

1
2

Ui•
V )† zUi•

7: end for
8: for j = 1 to p do
9: V newj• ← (W

1
2

Vj•
U)† zVj•

10: end for
11: U ← Unew

12: V ← V new

13: end while
14: return U ,V

Il existe des approximations de (X)†. Notamment celle qui consiste à effectuer la SVD de X, en posant
X = uσv>, alors (X)† = vσ−1u>
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2.2 Expériences

2.2.1 Les données
La base de données que nous avons utilisé pour tester les performances de l’algorithme de factorisation

est celle de Netflix. Nous avons réduit la taille de la base en ne conservant que 3000 utilisateurs choisi
aléatoirement, et en ne gardant que les 2000 articles pour lesquels ces 3000 utilisateurs ont le plus voté.
Comme pour le challenge KDD « who rated what », les données de vote sont transformées en matrice de
1 et de 0, où la valeur 1 à la ligne i et à la colonne j signifie que l’utilisateur i a voté pour l’article j, et la
valeur 0 signifie l’inverse.

2.2.2 Les critères
Pour chaque utilisateurs, nous cachons 5 valeurs tirés au hasard, ce seront les votes à retrouver. La

reconstruction de la matrice factorisée nous donne une matrice avec des scores d’appétence, plus le score
est haut plus l’article aura de chance d’avoir un vote. Nous recommandons 5 articles par utilisateur,
et nous calculons le pourcentage de ces articles présents dans les 5 articles cachés. Ceci correspond à
la fois à un calcul du rappel à 5 et de la précision à 5, qui dans ce cadre sont égaux. Étant donné le
cadre que nous nous fixons, nous ne recommandons pas les articles déjà achetés par les clients, ainsi nous
recommandons les 5 articles (parmi ceux qui n’ont pas de vote) ayant le plus haut score d’appétence pour
chaque utilisateur. Cette expérience peut être répétée, avec 3000 autres utilisateurs tirés aléatoirement.

2.2.3 Les résultats
Pour évaluer les performances de notre méthodes, nous la comparons avec une méthode standard qui

est la factorisation SVD.

Figure 2.1 – Précision en fonction du nombre de facteurs

La figure 2.1 représente la précision à 5 en fonction du nombre de facteurs pour les méthodes de facto-
risation SVD et binomiale. On note tout d’abord que pour chaque courbe, la précision augmente jusqu’à
atteindre un maximum et pour enfin redescendre. On voit clairement que la précision de la méthode de
factorisation binomiale est inférieure à celle de la SVD. Non seulement la complexité de l’algorithme est
supérieure, mais en plus les performances sont moindres. Cette méthode ne semble malheureusement pas
à retenir, un algorithme de Newton ne semble pas approprié pour ce genre de problème. Le seul point
positif serait que le maximum de précision est atteint pour un nombre de paramètres inférieur à celui de
la SVD.
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