
ANR ClasSel
Livrable 2.1
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Résumé

Ce livrable présente un état de l’art sur la sélection de modèle dans une perspective
décisionnelle au travers de l’approche “estimation de coût”. Dans un premier document,
nous enchâınons notre présentation de cet état l’art avec une première mise en oeuvre,
à titre d’essai, de l’estimation de coût comme sélecteur de variables d’un modèle de
régression linéaire, au travers de l’estimation des coefficients de régression par l’estimateur
des moindres carrés et ce, dans un cadre distributionnel qui des lois à symétrie sphérique.
Un papier en collaboration avec M.T. Wells en a résulté (1).
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Chapitre 1

Risk comparisons of variable
selection rules
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RISK COMPARISONS OF VARIABLE SELECTION
RULES

Dominique Fourdrinier∗ and Martin T. Wells †

Abstract

A fundamental statistical principle is that of parsimonious modeling, that is, simple
models are preferred to complicated ones. A common approach is to formulate the
variable selection issue as one of estimation of prediction error. One wishes to choose
the submodel which minimize the prediction error sum of squares. The problem with
this procedure is that the prediction error sum of squares depends on unknown pa-
rameters. Therefore one constructs selection procedures based on estimates of the
prediction error sum of squares and select the submodel having minimum estimated
prediction error. The best submodel in the sequence of all subsets of models is defined
as the one with the minimum value of the estimated prediction error sum of squares.
In this article we examine the properties of various families of variable selection rules.
With our formulation, we gain insight into some of the classical selection rules, while
also proposing a new class of subset selection procedures. In all of our calculations we
consider coordinate free linear models with spherically symmetric error terms.
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1 Introduction

Consider the linear model yi = θi + εi 1 ≤ i ≤ n where θi = β0 + β1Xi1 + · · · + βΠXiΠ, the
Xi1, . . . , XiΠ are fixed regressors and the εi’s are stochastic error terms. In linear models with
many independent variables, one is often confronted with selecting a subset of the predictors.
There are many approaches to this problem, most of which have been implemented in the
major statistical packages. Most of the approaches to date are ad hoc and have no basis
for their continued use. In this paper, we examine some of the well known dimensionality
and subset selection procedures in a decision theoretic framework. We will also propose
a new procedure. A decision theoretic examination has practical importance in that one
would like to have analytic evidence for the goodness of selection procedure, as opposed to
only simulation type evidence (cf . Roecker, 1991). It is surprising that there has been very
little work on the theoretical properties of the various selection procedures. The notable
exceptions are the article by George and Foster (1994), who examine the risk inflation of
variable selection rules, and Efron (1986), who gives a study of the bias properties of various
variable selection procedures and finds that some of that classical rules are less biased than
others.

A common approach is to formulate the variable selection problem as an estimation
prediction error problem. As pointed out by Efron and Tibshirani (1993, §17), “Prediction
error is a different quantity that measures how well a model predicts the response value
of a future observation. It is often used for model selection, since it is sensible to choose
a model that has the lowest prediction error among a set of candidates.” Specifically, we
wish to choose the subset of covariates which minimizes the prediction error sum of squares
(PES). The problem with this procedure is that the PES depends on unknown parameters.
Therefore one constructs estimates of the PES and select the submodel having minimum
estimated prediction error. We define the best submodel in the sequence of all subsets of
models as the one with the minimum value of the estimated PES. This is in the spirit of
the approach due to Breiman (1992), Efron and Tibshirani (1993, §17), and Shao and Tu
(1995, §7.4); however they all consider the mean PES (MPES). Berger and Pericchi’s (1993)
intrinsic Bayes factor criteria entails selecting the model that has the largest intrinsic Bayes
factor, a rationale quite similar to choosing the subset of covariates which minimize the
prediction error sum of squares. As the approach is Bayes there is no direct estimation but
just marginalization against a particular prior distribution.

The idea of applying PES and MPES estimation is routinely applied in nonparametric
estimation. The problematic choice of selecting the smoothing parameter is typically for-
mulated as the choosing the degree of smoothness tht minimizes an error estimate. In the
context of linear estimators (kernel, spline, and local linear estimators) for nonparametric
regression Hurrich et al. (1998) propose an improved version of Akaike’s error estimate to
select the smoothing parameter. Hurrich et al. (1998) show that the improved estimate
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of error yields an improved smoothing parameter via simulation. Donoho and Johnstone
(199x, 199x) and Donho et al. (199x) propose unbiased estimators of error and select their
smoothing parameter that minimizes this error estimate. In various numerous contexts cross-
validation is used to estimate the error of an estimator and the turning parmateric is selected
to minimize this error estimate.

Both theoretical and applied statisticians have different ideas what makes a good selection
rule. There is one camp of researchers who believe that good rules are made up of complexity
and goodness-of-fit components. The typical form for these rules are

SSp(Residual) + β(p) (1)

where p ≤ Π is the dimension of the submodel being fit, based on n observations, and where
β(p) represents a penalty for over-fitting. The well known Mallows’ (1973) Cp criterion and
Akaike (1970) information criterion (AIC) correspond to (1) with β(p) = 2p. Schwartz’s
(1978) Bayesian information criterion (BIC) corresponds to β(p) = p log n. A procedure
proposed by Foster and George (1994) takes β(p) = p log p which is essentially the asymptotic
form of a squared t-statistic (see (6) below for a finite sample analog). The final prediction
error (FPE) criterion proposed by Rissanen (1986) and studied by Wei (1992) can also be
written in the form of (1) with β(p) = ψp for some ψ > 0. The choice ψ = (2n− d)/(n− d)
yields a selection procedure asymptotically equivalent to d-fold cross validation, see Zhang
(1993) for more details. George and Foster (1997) recently proposed a data dependent
penalty function (see (6) below) based on an empirical Bayes objective.

It is interesting to note that Cp, AIC, and BIC were not originally motivated by the
goodness-of-fit plus complexity criteria. AIC compares the approximate likelihood of a given
model to a base model. While BIC calculates the posterior probability of model at hand.
Mallows’ Cp was originally derived as an estimate of the mean squared prediction error. It
appears that the complexity and the goodness-of-fit form intuition of the selection rules is
only an artifact. Hence one should not base a theory of variable selection solely on the form
of the selection rules. The theoretical construction of the notion of goodness of the overall
model is clearly the primary concern.

Another class of well known criteria functions are of the form

α(p)SSp(Residual), (2)

for some α(p) > 0, which represents a penalty for over and under-fitting. Craven and
Wahba’s (1979) generalized cross validation (GCV) takes α(p) = n(n− p)−2. This happens
to take a form almost identical to another procedure Sp proposed in Hocking (1976) and
Thompson (1978) which sets α(p) = (n − 1)(n − p)−1(n − p − 1)−1. Sp was motivated

3



by treating the response variable and the explanatory variables jointly as a multivariate
normal random variable in a prediction problem. Further aspects of Sp are explored in
Breiman and Freedman (1983). It can be shown that maximizing the adjusted R2-statistic
is identical to minimizing (2) with α(p) = n(n− p)−1. Lastly, Miller (1990) shows that the
well known PRESSp statistic proposed by Allen (1971, 1974) can be approximated by (2)
with a α(p) = (n − 2)(n − p)−2. Furthermore, Berger and Pericchi’s (1993) intrinsic Bayes
factor criteria is essentially equal to a power of SSp(Residual) times a multiple that depends
on the design matrix.

Many of the measures defined by (1) and (2) have an ad hoc motivation and their ap-
plication to model selection may be somewhat suspect. In this article we try to construct
a theory for which these seemingly ad hoc measures have some intrinsic meaning. Some
comparisons between the different selection procedures via an examination of their associ-
ated predictive risk functions are made. George and Foster (1997) recognized the benefits
using a risk function analysis, in their simulation study they compare the predictive risks of
various selection rules. We will see that the selection criteria of the form of (2) are usually
better than these of the form of (1). However, we will construct a class of procedures which
dominates the best in the class generated by the form in (2).

Efron and Tibsharani (1993, §17) point out that it is not clear which of the standard
variable selection methods is best: “The methods are asymptotically the same, but can
behave quite differently in small samples.” There have been results on the asymptotic
optimality of various selection procedures, cf. Li (1987). A problem with the asymptotic
results is that there are a variety of optimal procedures, and hence, there is an issue of which
“optimal” rule should be used. Furthermore it seems that any selection rule that has an
infinite number of information sources to choose a finite number of parameter ought to do
quite well.

We find it more intuitive to consider the data at hand and not the unseen possible
realizations. This is quite similar to the debate in the smoothing literature on the issue of
using the mean integrated squared error (MISE) and the integrated squared error (ISE). In
nonparameteric function estimation there is also a smoothing parameter that is selected on
the basis of minimization of an integrated squared error (ISE) or mean ISE (MISE). The
ISE is the infinite dimensional version of the PES. When one considers the MPES, one is
averaging over experiments that have not been performed. See Jones (1991) for more on this
issue.

In this paper, we consider coordinate free linear models with spherically symmetric error
terms. The normal distribution has long served as the standard model in the investigation
of linear models. One of its main attractive feature is that it depends on a small number
of parameters which have a direct interpretation. As an alternative, the normal distribution
has been generalized in two important directions, first as a special case of the exponential
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family and secondly as a spherically symmetric distribution. We will consider the latter.
There are a variety of equivalent definitions and characterizations of the class of spherically
symmetric distributions. A comprehensive review is given by Fang, Kotz, and Ng (1990). In
order to underline the intrinsic aspect of our results, the approach of multivariate analysis
adopted here is coordinate free (cf. Stone, 1987). We prefer to follow the coordinate free
approach since it is not necessary to choose a basis matrix to describe the subspace Θ. This
subspace can be described in two ways. Firstly we can pick a basis matrix and then define Θ
as the space spanned by its columns. This is the coordinatized version of the linear model. If
X is a basis matrix for Θ, then X is a n×Π matrix of rank Π, and there exists a unique Π−
dimensional parameter β such that θ = Xβ = (XTX)−1XT θ. Secondly, we can define Θ by a
set of linear contrasts which the elements must satisfy. This second approach is useful in the
analysis of variance problem. Many formulae may be unified using projections and lengths
of projections and they are easier to derive using the least squares property of projections
rather than the equivalent matrix expressions.

In the next section, we set up the model under study and give a precise formulation of the
variable selection problem. In Section 3, we compute the risk functions of some well known
cases selection rules and compare their decision theoretic properties. We find conditions
for which a class of prediction error estimators of the form (1) are dominated by a class
of prediction error estimators of the form (2). The comparison depends on the dimension
of the model, the sample size, and the spherically symmetric error distribution. We next
propose a new family of prediction error estimators and we show that the new family of rules
dominate the best of the rules of the form (2). In Section 4, we compare the outcomes of
the various procedures via simulation. The appendix contains some technical results and all
of the proofs of the propositions and theorems.

2 The Model and Formulation

Let y be an observation, in an n-dimensional Euclidian space (E, <,>), from a spherically
symmetric distribution Qθ around a location parameter θ. The main hypothesis about Qθ is
that θ belongs to a linear subspace Θ ⊂ E of dimension Π with 0 < Π < n. That is, y = θ+ε
where ε is distributed as Q0 on E and θ ∈ Θ ⊂ E. As mentioned previously, if we choose X
as an n × Π full rank basis matrix in Θ, then we have the usual regression model θ = Xβ.
However, since we are taking the coordinate free approach, our results can be applied to a
broader class of problems. Suppose we wish to estimate θ, by a decision rule ϕ(y), using
the sum of squared error loss ‖ θ − ϕ(y) ‖2 where ‖ · ‖ denotes the norm connected with
the inner product <,>. This loss is the prediction error sum of squares (PES(ϕ | θ)). As
Π < n the usual estimator of θ is the orthogonal projector ϕ0 from E onto Θ; this is the
usual least squares estimator. In the coordinatized linear model with θ = Xβ the least
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squares estimator has the usual form of ϕ0(y) = X(XTX)−1XTy. The analysis here will
be based on using the least squares estimator. One could also easily imagine using some
other sort of estimator for θ, such as a shrinkage-type estimate. The approach in George and
Foster (1997) essentially reduces to using a “positive part” estimator for θ. As one could
construct the appropriate estimators of loss (see Fourdrinier and Wells 1995) we could have
also considered a fairly wide class of shrinkage estimators for θ and their corresponding loss
estimates.

In the multiple regression problem, θ = Xβ, it may turn out that some of the components
of β are equal to zero. A more parsimonious linear model might be

y = θI + ε for θI = XIβI , (3)

where I is a subset of pI distinct positive integers less than or equal to Π, βI is a pI-vector
containing the components of β that are indexed by the integers in I, and XI is an n × pI

full rank matrix which contains the columns of X in the subset I.

Let A denote all the non-empty subsets of the integers 1, 2, . . . ,Π. There are 2Π − 1
possible subsets I ∈ A which give rise to different models MI of the form (3). For any such
model MI , the PES can be define as above through the choice of an estimator ϕI of θI ∈ ΘI ,
that is, PES(ϕI | θI). If one could compute PES(ϕI | θI), then it would be easy to rank the
2Π − 1 models, the model with the smallest PES(ϕI | θI) would be declared best. However
we do not have access to PES(ϕI | θI) since it depends on the unknown components of θI .
Therefore we propose to estimate the different PES(ϕI | θI) through a choice of statistics λI

and to rank the 2Π−1 models MI by their estimated PES. We are then viewing the statistic
used in a selection rule as an estimate of the PES. That is, the goal of model selection, in our
formulation, is to find the subset I ∈ A of dimension pI such that estimated prediction error
sum of squares λI(y) is minimized. This goal is consistent with that of Efron and Tibshirani
(1993, S17).

We now study how well such loss estimators, λI , of the PES(ϕI | θI) behaves. Most
researchers only insist on unbiasedness (cf. Mallows 1973, Craven and Wahba 1979, Donoho
and Johnstone 1994, 199x, Donoho et al. 199x, and Hurrich et al. 1998). An unbiasness
criterion does not adequately assess the behavior of an estimate as the variance does not
enter the assessment criteria. We will use a risk function criteria. To this aim, a further
distance measure is needed. For mathematical simplicity, we use squared error to evaluate
λI and define the risk function of λI by

R(λI , θI , PES(ϕI | θI)) = EθI
[(λI− ‖ ϕI − θI ‖2)2] = EθI

[(λI − PES(ϕI | θI))
2] (4)

where EθI
denote the expectation with respect to QθI

and θI ∈ ΘI corresponds to one of
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the 2Π− 1 possible different models. Note that, as we are considering all the 2Π− 1 possible
models MI , a loss estimator λ is actually a family of estimators, that is, λ = (λI)I∈A. Then
we will say than a loss estimator λ′ = (λ′I)I∈A dominates another estimate λ = (λI)I∈A if,
for any I ∈ A,

R(λ′I , θI , PES(ϕI | θI)) ≤ R(λI , θI , PES(ϕI | θI)). (5)

How does one choose between two selection rules? When do we consider one selection
rule better than another? As our selection procedures are based on the minimizers of loss
estimates, we will consider that a selection procedure associated to a loss estimator λ′ =
(λ′I)I∈A is better than one associated to a loss estimator λ = (λI)I∈A if the inequality in (5)
is satisfied.

We now wish to underline two important points. First we are not at all concerned
with the problem of optimally estimating θ, so we just use the least squares estimates
XI(X

T
I XI)

−1XT
I y for any linear subspace ΘI . Notice that, as it is an orthogonal projector,

its main properties do not depend on the specific linear subspace ΘI under consideration.
Likewise it will be the same for the various loss estimators for which we will compare. Thus
the arguments for utilizing one or another decision procedure will be uniform in I ∈ A. So
we will now drop the subscript I for sake of presenttion and the results below will be stated
in terms of θ,Θ and p rather than θI ,ΘI , and pI , respectively.

The estimated prediction error approach to selecting the subset I, that is to select the par-
simonious model, is to formulate the model selection problem as a loss estimation procedure.
This is in contrast with the approach taken by Breiman (1992), Efron and Tibshirani (1993,
§17), and Shao and Tu (1995, §7.4) who consider a risk estimation procedure. The problem
of estimating the post data accuracy was first considered by Lehmann (1950) who estimated
the power of a statistical test. In a series of papers Kiefer (1975, 1976, 1977) addressed the
problem of developing conditional and estimated confidence theories to provide frequentist
estimates of confidence. Berger (1985) compared the Bayesian and frequentist approaches to
this problem. Johnstone (1988), Rukhin (1988), Lu and Berger (1989), Casella (1992), and
Lele (1993) have discussed this problem in a variety of situations. In this article, we apply
these ideas to the problem of variable selection.

We assume throughout this article that the sampling distribution of the errors in the
general linear model are spherically symmetric. Recall that if y is an n-dimensional spher-

ical random vector around θ, then y has a stochastic representation y
d
= RUθ where R is a

nonnegative random radius Uθ is a uniformly distributed random variable on the unit sphere
S1,θ = {y ∈ E :‖ y − θ ‖= 1} and R and Uθ are independent. The n-dimensional spherical
distributions provide a nice extension of the classical n-dimensional spherical normal cen-
tered at the origin. The class of elliptical distribution contains a variety of distributions,
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many of which have heavy tails. In addition we can drop the classical independent and iden-
tically distributed error term assumption and assume a weaker exchangeability condition.
Exchangeability is a much more reasonable and natural assumption for statistical modeling,
see Draper, Hodges, Mallows, and Pregibon (1993).

3 Risk comparisons: Winners and Losers

In this section, we can compare various classes of model selection criteria that are based on
estimated PES and propose some new ones. We will consider a variable selection criteria
to be good if it is a good estimate of PES(ϕ | θ) =‖ θ − ϕ ‖2 (see Efron and Tibshirani
1993, S17, Breiman 1992, Shao and Tu 1995, S7.4). Hence the goal of this section is to study
estimates of PES(ϕ | θ) which in turn give us a view at the goodness of various selection
rules. We first find the best selection procedures in the classes defined in (1) and (2). For
(1) we find that Mallows’ Cp have some optimal properties. As for (2), we find a criterion
related to the well known Wahba’s GCV. Next we compare these two optimal procedures.
Lastly, we propose a procedure that dominates the previously mentioned selection rules.

We now consider the estimation of the PES(ϕ0 | θ) of the usual least squares estimator
ϕ0 of θ (i.e. the orthogonal projector from E onto Θ). We will first examine estimators of
the form of (1), that is, λβ =‖ y − ϕ0 ‖2 +β, where β is constant, possibly depending on
p. As previously mentioned the sampling distribution Qθ is spherically symmetric around θ.
Referring to the notations given in the appendix (see especially formula (8)), all the results
will be first obtained using the uniform distribution UR,θ on the sphere SR,θ = {y ∈ E :‖
y− θ ‖= R} of radius R centered at θ. Then they can be expressed through the distribution
of the radial distribution (i.e. the distribution of the norm ‖ · ‖ under Qθ and its expectation
denoted by E.

First by Lemma A.1 we have the following result, which is proved in the appendix.

Proposition 3.1: Assume that the distribution Qθ has a finite fourth moment and ϕ0 is
the least squares orthogonal projection from E unto Θ. Then

(i) the risk function at θ of λβ equals

R(λβ, θ, PES(ϕ0 | θ)) = Eθ

[
‖ y − ϕ0 ‖2 − ‖ ϕ0 − θ ‖2)2

]
+ 2β(n− 2p)E[R2]/n+ β2;

(ii) the optimal β is given by β∗ = E[R2](2p− n)/n;

(iii) the risk of the optimal estimate in the class λβ∗ equals

E[R4][
(n− p+ 2)(n− p) + p(p+ 2)− 2p(n− p)

n(n+ 2)
]− [E[R2]]2

(n− 2p)2

n2
;
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(iv) the optimal estimate in the class λβ∗ is an unbiased estimate of PES(ϕ0 | θ).
The optimal selection rule in this class can be found for different error distributions.

Note that the term E[R2]/n is exactly the variance of the error distribution of the general
linear model. If the error term is normally distributed with scale parameter σ, we have
λβ∗ =‖ y − ϕ0 ‖2 −(n − 2p)σ2, which is the famous Mallows’ Cp selection rule. It is
customary in practice to estimate σ2 by the usual estimate of σ2 under the model with all
Π variables included. It is important to note that the true optimal selection rule in this
class depends upon knowing the variance of the error distribution; hence, if this variance is
estimated, the selection rule is an approximation of the optimal rule. This optimality result
is a finite sample results, as opposed to the results of Li (1987) who proved the optimality of
Cp in an asymptotic sense. The optimality of λβ∗ depends on the fixed distribution at hand;
therefore, in this case, we do not have robustness of the optimal rule.

Now we consider selection rules of the form of (2), that is, λα = α ‖ y − ϕ0 ‖2, where
α > 0 is a constant, possibly depending on p. The properties of λα, using similar arguments
as those used in Proposition 3.1, are given in the following proposition, , which is proved in
the appendix.

Proposition 3.2: Assume that the distribution Qθ has a finite fourth moment and ϕ0 is
the least squares orthogonal projection from E unto Θ. Then

(i) the risk function at θ of λα is given by

R(λα, θ, PES(ϕ0 | θ)) =
[
α2 − 2a p

n−p+2
+ p(p+2)

(n−p)(n−p+2)

] [
(n−p+2)(n−p)

n(n+2)

]
E(R4);

(ii) the optimal α is given by α∗ = p/(n− p+ 2);

(iii) the risk of λα∗ is given by R(λα∗ , PES(ϕ0 | θ)) = 2p
n(n−p+2)

E[R4];

(iv) the bias of λα∗ equals 2p
n(2+p−n)

E[R2].

Note that the optimal λα does not depend on the radial distribution as does λβ∗ ; thus λα∗

has some nice robustness properties. Therefore λα∗ has optimality properties for the entire
class of spherically symmetric distributions. The optimal λα∗ is related to, but is not identical
to, the GCV and Sp. Again it is important to note that this optimality result holds for finite
samples. Li (1987) has shown that GCV is asymptotically optimal. An alternative estimator
of PES(ϕ0 | θ) is the unbiased estimator λu which is given by λu = p ‖ y − ϕ0 ‖2 /(n− p).
(The unbiasedness of λu follows from Lemma A.1 (i) by taking q = 0 and γ ≡ 1.) Since λα∗

and λu are asymptotically equivalent to GCV, they are also asymptotically optimal.

How do we choose between the two optimal PES estimators λα∗ and λβ∗? Asymptotic
results do not give any guidance since both λα∗ and λβ∗ are asymptotically optimal. One
problem with λβ∗ is that it depends on the possibly unknown radial distribution. This
dependence on E(R2) is not a problem in large samples; however, if one wishes to study to
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finite sample behavior of estimates, it is a draw back. A risk comparison between the two
estimates of PES is given in the next result, which is proved in the appendix.

Proposition 3.3: Assume that the distribution Qθ has a finite fourth moment and ϕ0 is
the least squares orthogonal projection from E unto Θ. Then the risk of λα∗ is smaller than
that of λβ∗ when n > 2p.

Is there a prediction error estimator better than λα∗? Since λβ∗ depends on the possibly
unknown second moment of the radial distribution and it is dominated by λα∗ , in the impor-
tant case where n > 2p, in the light of Proposition 3.3 we think that λβ∗ should be dismissed.
For the remainder of this section, we will develop a class of procedures that dominate λα∗ .
The goal is now to prove the domination of the estimator λα∗ by a competing prediction
error loss estimator λ of the form

λ(y) = λα∗(y)− ‖ y − ϕ0 ‖4 γ(ϕ0) (6)

where γ(·) is a positive function. It is important to note that in the shrinkage function the
residual term ‖ y−ϕ0 ‖ appears. It turns out that the use of this term needs less assumptions
about the distributions than when it does not appear. Specifically, this gives a robustness
property to the results since they are valid for the entire class of spherically symmetric
distributions (under the required moment conditions). Since, for a given observation y,
the residual term ‖ y − ϕ0(y) ‖ represents the square of the distance between y and its
projection on Θ, it is intuitively natural that its consideration strengthens the information
we use through the estimator.

Our primary example will be to choose γ(t) = 2(p− 4)/[(n− p+ 4)(n− p+ 6) ‖ t ‖2]. In
this case the prediction error estimated loss (Peel) is

Peel(y | ϕ0) = p
n−p+2

‖ y − ϕ0 ‖2 − 2(p−4)
(n−p+4)(n−p+6)

‖y−ϕ0‖4
‖ϕ0‖2 .

=
(

p
n−p+2

− 2(p−4)
(n−p+4)(n−p+6)

‖y−ϕ0‖4
‖ϕ0‖2

)
‖ y − ϕ0 ‖2

(7)

The shrinkage factor turns out to be related to the reciprocal of the F-statistic for testing
that all of the parameters of a p-dimensional linear model are equal to zero. Hence, if
the model does not fit, then the shrinkage factor is larger while, if there is a good fit, the
shrinkage factor is smaller. The selection function λ also has the nice intuitive properties of
the penalized selectors in (1), however, now the penalty function depends on the data, rather
than only on the dimension of the model. The penalty term in λ can also be viewed as the
famous F-to-enter quantity from stepwise regression. Therefore operationally to compare
two models ΘI and ΘI′ , we compute the respective least squares estimators ϕ0I

and ϕ0I′ and
declare ΘI to be better than ΘI′ if Peel(y | ϕ0I

) ≤ Peel(y | ϕ0I′ ).

The general result is given below and its proof is in the appendix.
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Theorem 3.1: Assume that p > 4, the distribution Qθ has a finite fourth moment and the
function γ is twice weakly differentiable on Θ and there exists a constant κ > 0 such that,
γ(t) ≤ κ/ ‖ t ‖2 for every t ∈ Θ. A sufficient condition under which the estimator λ given in
(6) dominates the estimator λα∗ is that γ satisfies the differential inequality

γ2 +
2

(n− p+ 4)(n− p+ 6)
4 γ ≤ 0.

The example in (7) satisfies the condition of the theorem. More precisely, with γ(t) =
d/ ‖ t ‖2 for all t ∈ Θ, it is easy to derive 4γ(t) = −2d(p− 4)/ ‖ t ‖4 and thus the sufficient
condition of the theorem is written as 0 < d ≤ 4(p−4)/(n−p+4)(n−p+6), which only occurs
when p > 4. Straightforward calculus shows that the value of d that makes the left hand side
of the inequality most negative is given by 2(p− 4)/(n− p+ 4)(n− p+ 6). Notice that this
value of d, compared with the proof of Theorem 3.1, does not necessarily lead to a maximum
difference in risk between λ and λα∗. A possible problem with the estimators λ in (6) is
that it may be negative, which should not happen since we are estimating a non-negative
quantity. A simple remedy to this problem is to use the positive-part estimators.

The comparisons above were done under the hypothesis that there was no model bias,
that is, ϕ0 is the least squares orthogonal projection onto the correct model space Θ. In
the case where the projection onto the wrong space Θ where the true model is defined by
Θ∗, there is model bias. In this case one could use the risk function Eθ[(λ− ‖ ϕ0 − θ∗ ‖2)2],
for θ∗ ∈ Θ∗ to evaluate the prediction error sum of squares estimate. Under this risk, it
can be shown that for the both families discussed above the optimal α and β both depend
on the non-centrality parameter ‖ θ − θ∗ ‖2. Furthermore the bias of λα∗ and λβ∗ are
2p/[n(p − n + 2)]E(R2)− ‖ θ − θ∗ ‖2 and − ‖ θ − θ∗ ‖2, respectively. Hence as ‖ θ − θ∗ ‖2

increases the bias of both of the procedures becomes more sever. It is difficult to make
any statements about risk domination of a particular prediction error estimator in the case
of non-zero model bias. The zero model bias assumption is also made in risk comparisons
made by Foster and George (1994) in their examination of the risk inflation of variable
selection rules. It should be stressed that the assumption is made only in the derivation of
the criterion. It is then possible to study the performance of this criterion without regard
to the assumptions underlying its derivation.

4 Simulation Study

In this section we consider some simulation studies of the properties of the selection rule
proposed in (6). The rules to which we compare Peel in (7) are Cp, leave-one-out cross
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validation CV, Monte Carlo cross validation, MCCV (nv), the lasso, the garrotte, and ridge
regression. The MCCV (nv) was proposed by Picard and Cook (1984) and was studied by
Shao (1993). The simple idea behind MCCV (nv) is to randomly split the data b times and
average the squared deviation errors over the splits. That is, randomly draw a collection R
of b subsets of 1, ..., n that have size nv, and select a model by minimizing the average of
the squared deviation errors over the collection R. Shao (1993) showed, via simulation, that
MCCV (nv) out performs CV.

The lasso estimate, due to Tibsharani (1996), β̂ is defined by

β̂ = arg min


n∑

i=1

yi −
∑
j

βjxij

2
 subject to

∑
j

| βj |≤ t.

Let β̂ = (β̂1, . . . , β̂p), this computation is a carried out via quadratic programming prob-
lem with linear inequality constraints. The parameter t ≥ 0 controls the amount of shrink-
age that is applied to the estimates. Let β̂o

j be the full least squares estimates and let

t0 =
∑ | β̂o

j |. Values of t < t0 will cause shrinkage of the solutions towards 0, and some
coefficients may be exactly equal to zero. For example, if t = t0/2, the effect will be roughly
similar to finding the best subset of size p/2.

The motivation for the lasso came from an interesting proposal of Breiman (1995).
Breiman’s non-negative garotte minimizes

n∑
i=1

yi −
∑
j

cjβ̂
o
jxij

2

subject to cj ≥ 0,
∑

cj ≤ t.

The garotte starts with the least squares estimates and shrinks them by non-negative
factors whose sum is constrained. In extensive simulation studies, Breiman showed that
the garotte has consistently lower prediction error than subset selection and is competitive
with ridge regression except when the true model has many small non-zero coefficients. A
drawback of the garotte is that its solution depends on both the sign and the magnitude of
the least squares estimates. In overfit or highly correlated settings where the least squares
estimates behave poorly, the garotte may suffer as a result. In contrast, the lasso avoids the
explicit use of the least squares estimates.

As a first example consider the following model, yi = β1X1i + β2X2i + β3X3i + β4X4i +
β5X5i + εi where i = 1, ..., 40, εi are iid from N(0, 1), Xki is the ith value of the kth predictor
variable Xk, X1k ≡ 1, and the values of Xki, k = 2, ..., 5, i = 1, ..., 40 are taken from an
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example in Gunst and Mason (1980). Some of the βj’s may be equal to zero, hence some
prediction variables are selected from five possible variables X1, ..., X5 and the best model is
then chosen via the given selection procedure. There are 31 possible models each denoted by
a subset of 1, ..., 5 that contain the indices of the variables Xk in the model. This example
is essentially the one studied in Shao (1993).

In this comparison we considered the usual Cp and CV , and MCCV (nv) with nv = 25
and b = 2n. As for improved estimate, we used positive part of the procedure in (7). Table 1
gives the empirical probabilities (based on 5000 simulation) of selecting each model in several
cases. The results of the simulation show that the probability of selecting the correct model
for the Peel selection procedure in (7) and MCCV (nv), are roughly equal, while high than
CV , and Cp. Although CV and Cp are not very different, however, Peel and MCCV (nv)
are much better than CV and Cp. The results are given in Table 1. We also repeated the
simulation with student t errors with degrees of freedom equal to 5, 10 and 25. The results
of the simulation were basically the same, therefore we do not report the results. Note that
even though p ≤ 4 for this example the nice properties of Peel are maintained.

As a second example consider we simulated 1000 datasets of 50 observations from the
model y = xβ + ε where ε is standard normal. In this example we compare Peel in (7) to
MCCV (with nv = 25 and b = 2n), lasso, garotte, and Cp. All of the turning parameters
choosen by five-fold cross-validation. The X’s are generated from independent Normal(1, ·5)
distributions. In each of these examples the signal to noise ratio is nearly constant. The
empirical probabilities of selecting the correct model are given in Table 2. All the methods
work roughly the same when the signal is spread equally throughout the parameters outer.
However, as one of the coordinater begins to dominate the signal the performance of the
lasso and garotte degenerate much quicker than Peel and MCCV . The lasso and garotte
are much less computational intensive than the Peel and MCCV .

As the next set of examples consider we mimic the simulation study given in Tibsharai
(1996). We simulated 50 data sets consisting of 20 observations from the model y = Xβ+σε,
where ε is standard normal. In the following, we compare the full least squares estimates
with the lasso, the non-negative garotte, ridge regression, Cp, and the new Peel proposal in
(7). We used fivefold cross-validation to estimate the regularization parameter in each case.
The mean-squared errors are computed over 200 simulations of this model.

As Example 3 let β = (3, 1.5, 0, 0, 2, 0, 0, 0)T and correlation between xi and xj was ρ|i−j|

with ρ = 0.5. We set σ = 3, and this gave a signal-to-noise ratio of approximately 5.7.
Table 3 shows the mean-squared errors from this model for 200 simulations of this model.
The Peel performs the best, then followed by the lasso, garotte, and ridge regression. Least
squares and Cp both preform poorly.

Example 4 is the same as Example 3, but with βj = 0.85,= 1, . . . , 8j and σ = 3; the
signal-to-noise ratio was approximately 1.8. The results in Table 3 show that ridge regression
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and Peel are best. The lasso and garotte seem to over shrink.

For Example 5 we chose a set-up that should be well suited for subset selection. The
model is the same as Example 3, but with β = (5, 0, 0, 0, 0, 0, 0, 0) and σ = 2 so that the
signal-to-noise ratio was about 7. The results in Table 5 show that the garotte, Peel and
lasso all work well. The garotte and lasso were designed for this situation.

As example 6 we examine the performance of the lasso in a bigger model. We simulated
50 data sets each having 100 observations and 20. We defined predictors xij = zij + zi where
zij and zi are independent standard normal variates. This induced a pairwise correlation of
0.5 among the predictors. The coefficient vector was β = (0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 0, 0,
0, 0, 0, 2, 2, 2, 2, 2). Finally we defined y = Xβ + 15ε where ε was standard normal. This
produced a signal-to-noise ratio of roughly 9. The results in Table 6 show that the ridge
regression and Peel perform well in terms of mean squared error while Peel is the better of
the two in terms of average number of zero coefficients, although the garotte and lasso are
not all too much worse. In this example the Peel procedure requires much more computation
than the other methods.

5 Appendix

An n × 1 random vector ε is said to have a spherically symmetric distribution around zero

if for every Γ ∈ O(n),Γε
d
= ε, where “

d
=” means equal in distribution and O(n) denotes

the group of n× n orthogonal transformations. A spherically symmetric random vector, in
general, does not necessarily possess a density. However, if the density exists it must be at
the form g(‖ ε ‖2) for some nonnegative function g(·) of a scalar variable. In this case

∫
E
g(‖ ε ‖2)dε =

πn/2

Γ
(

n
2

) ∫ ∞

0
zn/2−1g(z)dz = 1.

Hence, a nonnegative function g(·) can be used to define a density g(‖ ε ‖2) for some spherical
distribution if and only if

∫ ∞

0
zn/2−1g(z)dz <∞.

The function g is called the density generator of the spherical distribution. A fundamentally
important result in spherical distribution theory is the representation of random variables
as a random radius times a uniform random vector on the unit sphere. Now if y is an
n-dimensional random vector such that y = θ + ε, for some fixed θ ∈ RP , then it can
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be shown that y has a stochastic representation y
d
= RUθ where R is a random radius

with distribution ρ,Uθ is a random variable with uniform distribution on the unit sphere
S1,θ = {y ∈ E :‖ y − θ ‖= 1} and R and Uθ are independent. Or equivalently, if Qθ is the
distribution of y, then for every bounded function f, we have

Eθ[f ] = EER,θ[f ] =
∫

R+

ER,θ[f ]ρ(dR) (8)

where E and ER,θ denotes the expectation with respect to the radial distribution ρ (the
distribution of the norm ‖ · ‖ under Q0) and the uniform distribution UR,θ on the sphere
SR,θ = {y ∈ E :‖ y − θ ‖= R} of radius R and center θ, respectively.

In order to obtain the risk of any estimator λ of the PES(ϕ), it suffices to calculate it
working conditionally to the radius, that is to say to replace Qθ by UR,θ in the expression (4).
Since the integrand terms in the risk functions depend on the observation only through ϕ0,
the expressions can be calculated using the fact that the distribution of ϕ0, under UR,θ, has
a density with respect to the Lebesgue measure on Θ (see Kelker 1970). It is worth noting
that we do not assume that Qθ has a density with respect to the Lebesgue measure on E.

The classical example of a spherical distribution is the n-dimensional normal distribu-
tion, that is, ε is distributed Nn(0, σ2In). In this case, the radial distribution is σ times

a χn-random variable, that is R
d
= σχn. Hence E(ε) = 0 and Cov(ε) = σ2E(R2) =

σ2E (χ2
n) In/n = σ2In, since χ2

n is a Chi Square distribution with n degrees of freedom.

With a multivariate Student distribution, the result differs according to the degrees m of
freedom. Indeed consider, for Qθ, the unscaled density

g(‖ y − θ ‖2) =
Γ
(

m+n
2

)
Γ
(

m
2

)
(πm)n/2

[
1 +

‖ y − θ ‖2

m

]−m+n
2

.

Here, the density of the radius is equal to

f(R) =
2πn/2

Γ(n/2)
Rn−1g(R2) =

2Γ(m+n
2

)

Γ(m
2
)Γ(n

2
)mn/2

[
1 +

R2

m

]−m+n
2

Rn−1.

After some tedious calculations, we get E[R2] = nm/(m− 2) for m > 2 and E[R4] = n(n+
2)m2/(m− 4)(m− 2) for m > 4. The fact that the Student distribution behaves differently
from the normal distribution is well known. Although it gives a good approximation to the
normal model, Zellner (1976) has shown that a t-distribution leaves, through the choice of
m, more freedom to the experimenter.
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Another example, which is not a mixture of normal distributions, is the Kotz distribution
whose Qθ has the density g(‖ x− θ ‖2) with

g(s) =
Γ(n/2)

(2π)n/22γΓ(n/2 + γ)
sγ exp(−2

2
).

When γ 6= 0, the function γ is not completely monotonic (that is, (−1)mdmg/dsm ≥ 0, does
not hold for every m), hence the distributions is not a normal mixture (see Berger, 1976).
The density of the radius is given by

f(R) =
2πn/2

Γ(n/2)
Rn−1g(R2) =

21−(n/2+γ)

Γ(n/2 + γ)
Rn+2γ−1 exp

(
−R

2

2

)
.

A straightforward calculation gives E[R2] = n + 2γ and E[R4] = (n + 2γ)/(n + 2 + 2γ) as
long as the inequality n+2γ > 0 holds. For further examples see Fang, Kotz, and Ng (1990).

The following two results are crucial in all of our calculations. The proofs are given in
the appendix of Fourdrinier and Wells (1995). The proof of Lemma A.1 (i) follows from
two applications of the divergence theorem for weakly differentiable functions (see Ziemer,
1989), while Lemma A.1 (ii) follows from straightforward calculation.

Lemma A.1: Let ϕ0 be the least squares orthogonal projection from E to Θ. Then, (i) for
every twice weakly differentiable function γ and for every integer q,

ER,θ [‖ y − ϕ0 ‖q‖ ϕ0 − θ ‖2 γ(ϕ0)] = p
n−p+q

ER,θ [‖ y − ϕ0 ‖q+2 γ(ϕ0)]

+ 1
(n−p+q)(n−p+q+2)

ER,θ [‖ y − ϕ0 ‖q+4 4γ(ϕ0)] ;

(ii) then for every integer j ≥ 1,

Eθ

[
‖ y − ϕ0 ‖2j

]
= E[R2j]Πj

i=1

n−k
2

+ j − i
n
2

+ j − i
.

Proof of Proposition 3.1: (i) Evaluating (5) at λβ we have

R(λβ, θ, PES(ϕ0 | θ))
= Eθ [(‖ y − ϕ0 ‖2 +β− ‖ ϕ0 − θ ‖2)2]
= E [ER,θ[(‖ y − ϕ0 ‖2 − ‖ ϕ0 − θ ‖2)2]] + 2βE [ER,θ [(‖ y − ϕ0 ‖2 − ‖ ϕ0 − θ ‖2]] + β2.
= E [ER,θ [(‖ y − ϕ0 ‖2 − ‖ ϕ0 − θ ‖2)2]] + 2β n−2p

n−p
E [ER,θ[‖ y − ϕ0 ‖2]] + β2

= Eθ ‖ y − ϕ0 ‖2 − ‖ ϕ0 − θ ‖2)2 + 2β(n− 2p)E(R2)/n+ β2.
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(ii) The risk function R(λβ, θ, PES(ϕ0 | θ)) is quadratic and convex in β. Simple calculus
yields the result.

(iii) The first term of R(λβ, θ, PES(ϕ0 | θ)) may be simplified as

Eθ

[
‖ y − ϕ0 ‖4 + ‖ ϕ0 − θ ‖4 −2 ‖ y − ϕ0 ‖2‖ ϕ0 − θ ‖2

]

= Eθ

[
‖ y − ϕ0 ‖4

] [
1 +

p(p+ 2)

(n− p)(n− p+ 2)
− 2p

n− p+ 2

]

= E(R4)

[
(n− p+ 2)(n− p) + p(p+ 2)− 2p(n− p)

n(n+ 2)

]
.

The first equality follows from Lemma A.1 (i) applied to the second and third term with
q = 0 and γ =‖ ϕ0 − θ ‖ then q = 2 and γ ≡ 1. While the second equality follows from
Lemma A.1 (ii) with j = 2.

(iv) Evaluating the difference in expectation we have

Eθ[λβ∗− ‖ ϕ0 − θ ‖2]

= Eθ

[
‖ y − ϕ0 − θ ‖2 + (2p−n)

n
E (R2)− ‖ ϕ0 − θ ‖2

]
= n−p

n
E(R2) + (2p−n)

n
E(R2)− p

n
E(R2),

where the calculation of the first term follows from Lemma A.1 (ii) and the third term from
Lemma A.1 (i) with q = 0 and γ ≡ 1.

Proof of Proposition 3.2: The risk and bias calculations follow from multiple applications
of Lemma A.1 as in Proposition 3.1. Statements (ii), (iii) and (iv) can be deduced by simple
calculus.

Proof of Proposition 3.3: The proof follows from a comparison of the risk functions given
in Proposition 3.1 (iii) and 3.2 (iii). It suffices to show

n

(n− 2p)2

[
(n− p+ 2)(n− p) + p(p+ 2)− 2p(n− p)

n+ 2

]
≥ [E(R2)]2

E(R4)
.

An application of Jensen’s inequality yields that the right hand side of the inequality is
bounded above by one. Therefore, to prove the result it is sufficient to show that the left
hand side of the inequality is greater than one. Extremely tedious algebra shows that this
is indeed the case. As an additional check of the algebra, we verified the left hand side of
the inequality is greater than one numerically for all n(> 2p) less than ten million. As the
sample size tends to infinity it is easy to see that the weak inequality always holds.
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Before giving the proof of Theorem 3.1, we consider the problem of the finiteness of the
risks of the estimators λa∗ and λ. It is easy to check, using the spherically symmetry ofQθ and
the proportionality of Eθ[‖ y−ϕ0 ‖4] and Eθ[‖ ϕ0− θ ‖4] (this follows from two applications
of Lemma 3.1 first with q = 0 and γ(t) =‖ t − θ ‖2, then with q = 2 and γ(t) = 1), that
the risk of the optimal estimator λ∗ is finite if and only if Qθ has a finite fourth moment.
If the risk of λa∗ is finite, straightforward calculation (see the first expression of the risk of
λ given at the beginning of the proof of Theorem 3.1) and an application of the Cauchy-
Schwarz inequality show that the risk of the shrinkage estimator (6) is finite if and only if
Eθ[‖ y−ϕ0 ‖8 γ2(ϕ0)] <∞. A straightforward way of showing this expectation is finite is to
assume that there exists a constant β > 0 such that, γ(t) ≤ β/ ‖ t ‖2 for every t ∈ Θ. This
condition is often assumed when estimating a location parameter, see Cellier and Fourdrinier
(1995) for more details and references. Indeed, working conditionally on the radius R, it
implies

ER,θ[‖ y − ϕ0 ‖8 γ2(ϕ0)] ≤ β2R4ER,θ

(‖ y − ϕ0 ‖2

‖ ϕ0 ‖2

)2
 (9)

On the right hand side of (9), for θ = 0, the expectation is independent of R since it is the
second moment of a generalized noncentral F distributed random variable with n− p and p
degrees of freedom (up to a multiplicative constant). This moment is finite as soon as p > 4
and remains finite for θ 6= 0 (since the distribution is merely translated by θ) and can be
bounded from above by a constant independent of R. Now when we uncondition, with the
assumption that Qθ has a finite fourth moment, the right hand side of (9) is finite. Hence,
to ensure risk finiteness, we will assume p > 4. We can now state the following theorem,
whose proof is adapted from Fourdrinier and Wells (1995).

Proof of Theorem 3.1: Since Qθ is spherically symmetric around θ, it is clear it suffices
to obtain the result in working conditionally on the radius. Referring to the notations given
above for R > 0 fixed, we can compute using the uniform distribution UR,θ on the sphere
SR,θ. Hence we have

ER,θ[(λ− ‖ ϕ0 − θ ‖2)2] = ER,θ[(λα∗(y)− ‖ y − ϕ0 ‖4 γ(ϕ0)− ‖ ϕ0 − θ ‖2)2].

Developing the cross-product term and using the form of λα∗, we have

ER,θ[(λα∗− ‖ ϕ0 − θ ‖2) ‖ y − ϕ0 ‖4 γ(ϕ0)] = p
n−p+2

ER,θ[‖ y − ϕ0 ‖6 γ(ϕ0)]

−ER,θ[‖ ϕ0 − θ ‖2‖ y − ϕ0 ‖4 γ(ϕ0)].

Using Lemma A.1 with q = 4, the second integral of the right hand side becomes
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ER,θ[‖ ϕ0 − θ ‖2‖ y −ϕ0 ‖4 γ(ϕ0)] = p
n−p+4

ER,θ[‖ y − ϕ0 ‖6 γ(ϕ0)]

+ 1
(n−p+4)(n−p+6)

ER,θ[‖ y − ϕ0 ‖8 4γ(ϕ0)].

Replacing this expression in the cross-product term and combining the terms with ‖
y − ϕ0 ‖6 γ(ϕ0), we get

ER,θ[(λ− ‖ ϕ0 − θ ‖)2] = ER,θ[(λα∗− ‖ ϕ0 − θ ‖)2]− 4p

(n− p+ 2)(n− p+ 4)
ER,θ[‖ y − ϕ0 ‖6 γ(ϕ0)]

+ER,θ[‖ y − ϕ0 ‖8 γ(ϕ0)] +
2

(n− p+ 4)(n− p+ 6)
ER,θ[‖ y − ϕ0 ‖8 4γ(ϕ0)].

Since, on the right hand side, the second term is negative (γ is positive) and we have
the same power 8 for the term ‖ y − ϕ0 ‖ in the two last integrals, it is clear that
R(λ, θ, PES(ϕ0)) ≤ R(λα∗, θ, PES(ϕ0)) provided that γ2 + 2

(n−p+4)(n−p+6)
4 γ ≤ 0.

The proof of Theorem 3.1 and Lemma A.1 show that the power q = 4 chosen for the
residual term ‖ y − ϕ0 ‖ in the expression of λ is the only one possible. Indeed for any
arbitrary q we would obtain ‖ y − ϕ0 ‖2q before γ2 and ‖ y − ϕ0 ‖q+4 before 4γ and the
comparison of these two terms is possible only if 2q = q + 4, that is to say only if q = 4.
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Model Cp CV MCCV Peel

β = (2, 0, 0, 4, 0)T 1,4 .524 .578 .820 .831
1,2,4 .133 .142 .126 .096
1,3,4 .134 .137 .121 .094
1,4,5 .138 .139 .104 .099

1,2,3,4 .064 .072 .021 .023
1,2,4,5 .050 .046 .011 .014
1,3,4,5 .021 .031 .009 .009

1,2,3,4,5 .008 .007 .000 .000
β = (2, 0, 0, 4, 8)T 1,4,5 .707 .721 .911 9.23

1,2,4,5 .173 .152 .072 .070
1,3,4,5 .157 .148 .063 .055

1,2,3,4,5 .083 .089 .009 .000
β = (2, 9, 0, 4, 8)T 1,4,5 .021 .013 .019 .007

1,2,4,5 .821 .836 .937 .955
1,3,4,5 .020 .019 .014 .011

1,2,3,4,5 .164 .152 .012 .008
β = (2, 9, 6, 4, 8)T 1,2,3,5 .001 .001 .001 .000

1,2,4,5 .002 .001 .003 .001
1,3,4,5 .026 .030 .024 .019

1,2,3,4,5 .976 .981 .952 .983

Table 1: Empirical Probabilities of Selecting Each Model.

True Parameter Value Peel MCCV Lasso Garrotte Cp

(1, 1, 1, 1, 1, 0, 0, 0, 0, 0)T .901 .882 .824 .819 .621
(2, 1, 1, .5, .5, 0, 0, 0, 0, 0)T .863 .841 .793 .774 .542
(3, .5, .5, .5, .5, 0, 0, 0, 0, 0)T .852 .794 .682 .673 .535
(3, 1, .5, .4, .1, 0, 0, 0, 0, 0)T .846 .802 .636 .606 .501
(4.6, .1, .1, .1, .1, 0, 0, 0, 0, 0)T .837 .787 .649 .642 .493
(4.8, .05, .05, .05, .05, 0, 0, 0, 0, 0)T .724 .703 .617 .586 .462

(4.9, .075, .05, .05, .025, 0, 0, 0, 0, 0)T .617 .564 .316 .284 .254

Table 2: Empirical Probabilities of Selecting the Correct Model.
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Method Median mean-squared Ave. No. of
error zero coefficients

Least Squares 3.57 (0.29) 0.0
Lasso 2.41 (0.16) 3.8
Garrotte 2.76 (0.19) 3.3
Cp 3.46 (0.27) 2.6
Ridge Regression 3.04 (0.19) 0.0

Peel 2.40 (0.17) 4.5

Table 3: Results for Example 3 where β = (3, 1.5, 0, 0, 0, 2, 0, 0, 0)T

.

Method Median mean-squared Ave. No. of
error zero coefficients

Least Squares 7.88 (0.72) 0.0
Lasso 6.81 (0.44) 2.8
Garrotte 7.27 (0.44) 3.6
Cp 8.01 (0.52) 1.3
Ridge Regression 2.95 (25) 0.0

Peel 3.30 (1.7) 0.8

Table 4: Results for Example 4 where β = (0.85, . . . , 0.85)T

.

Method Median mean-squared Ave. No. of
error zero coefficients

Least Squares 2.52 (0.06) 0.0
Lasso 1.01 (0.02) 5.5
Garrotte 0.72 (0.02) 5.9
Cp 1.17 (0.05) 4.4
Ridge Regression 2.93 (0.07) 0.0

Peel .84 (0.03) 5.8

Table 5: Results for Example 5 where β = (5, 0, 0, 0, 0, 0, 0, 0)T )
.

25



Method Median mean-squared Ave. No. of
error zero coefficients

Least Squares 83.5 (6.3) 0.0
Lasso 42.7 (5.3) 11.5
Garrotte 47.1 (4.2) 12.1
Cp 58.4 (5.6) 8.2
Ridge Regression 36.5 (2.1) 0.0

Peel 39.2 (3.4) 9.6

Table 6: Results for Example 6 where β = (0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2)T

.
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Abstract

Let X be a random vector with distribution Pθ where θ is an unknown param-
eter. When estimating θ by some estimator ϕ(X) under a loss function L(θ, ϕ),
classical decision theory advocates that such a decision rule should be used if it
has suitable properties with respect to the frequentist risk R(θ, ϕ). However, after
having observed X = x, instances arise in practice in which ϕ is to be accompanied
by an assessment of its loss L(θ, ϕ(x)), which is, since θ is unknown, unobservable.
A common approach to this assessment is to consider estimation of L(θ, ϕ(x)) by an
estimator δ, called the loss estimator. To date, there is a sizeable literature dealing
with loss estimation. Here, we present an expository development of loss estimation
with substantial emphasis on the setting where the distributional context is nor-
mal and its extension to the case where the underlying distribution is spherically
symmetric. Bayes estimation is also considered and comparisons are made with
unbiased estimation.

AMS 2010 subject classifications. Primary 62C15, 62C20, 62F10, 62H12.

Keywords and phrases: conditional inference, linear model, loss estimation, quadratic
loss, risk function, robustness, shrinkage estimation, spherical symmetry, SURE, unbiased
estimator of loss, uniform distribution on a sphere.

∗Université de Rouen, LITIS EA 4108, Avenue de l’Université, BP 12, 76801 Saint-Étienne-du-
Rouvray, France. The support of the ANR grant 08-EMER-002 is gratefully acknowledged.

†Cornell University, Department of Statistical Science, 1190 Comstock Hall, Ithaca, NY 14853, USA.
The support of NSF Grant 06-12031 and NIH Grant R01-GM083606-01 are gratefully acknowledged.

1



1 Introduction

Suppose X is an observable from a distribution Pθ parameterized by an unknown param-
eter θ. In classical decision theory, it is usual, after selecting an estimation procedure
ϕ(X) of θ, to evaluate it through a loss criterion, L(θ, ϕ(X), which represents the cost
incurred by the estimate ϕ(X) when the unknown parameter equals θ. In the long run,
as it depends on the particular value of X, this loss cannot be appropriate to assess the
performance of the estimator ϕ. Indeed, to be valid (in the frequentist sense), a global
evaluation of such a statistical procedure should be based on all the possible observations.
Consequently, it is common to report the risk R(θ, ϕ) = Eθ[L(θ, ϕ(X)] as a measure of
the efficiency of ϕ (Eθ denotes expectation with respect to Pθ). Thus we have at our
disposal a long run performance of ϕ(X) for each value of θ. However, although this
notion of risk can effectively be used in comparing ϕ(X) with other estimators, it is
inaccessible since θ is unknown. The usual frequentist risk assessment is the maximum
risk Rϕ = supθ R(θ, ϕ).

When X = x the loss, L(θ, ϕ(x)), itself could serve as a perfect measure of the
accuracy of ϕ if it were available (which it is not since θ is unknown). It is natural
to estimate L(θ, ϕ(x)) by a data-dependent estimator δ(X), a new estimator called a
loss estimator. Such an estimator can serve as a data-dependent assessment (instead of
Rϕ). This is a conditional approach in the sense that accuracy assessment is made on a
data-dependent quantity, the loss, instead of the risk.

To evaluate the extend to which δ(X) successfully estimates L(θ, ϕ(X)), another loss
is required and it has become standard, for simplicity, to use the squared error

L∗(θ, ϕ(X), δ(X)) = (δ(X)− L(θ, ϕ(X))2 . (1.1)

In so far as we are thinking in terms of long-run frequencies, we adopt a frequentist
approach to evaluating the performance of L∗ by averaging over the sampling distribution
of X given θ, that is, by using a new notion of risk

R(θ, ϕ, δ) = Eθ[L
∗(θ, ϕ(X), δ(X))] = Eθ[(δ(X)− L(θ, ϕ(X))2] . (1.2)

As Rϕ reports on the worst possible situation (the maximum risk), we may expect that
a competitive data-dependent report δ(X) should improve on Rϕ under the risk (1.2),
that is, for all θ, δ(X) satisfies

R(θ, ϕ, δ) ≤ R(θ, ϕ,Rϕ) . (1.3)

More generally, a reference loss estimator δ0 will be dominated by a competitive estimator
δ if, for all θ,

R(θ, ϕ, δ) ≤ R(θ, ϕ, δ0) , (1.4)

with strict inequality for some θ.
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Unlike the usual estimation setting where the quantity of interest is a function of the
parameter θ, loss estimation involves a function of both θ and X (the data). This feature
may make the statistical analysis more difficult but it is clear that the usual notions of
minimaxity, admissibility, etc, and their methods of proof can be directly adapted to that
situation. Also, although frequentist interpretability was evoked above, in case we would
be interested in a Bayesian approach, it is easily seen that this approach would consist
of the usual Bayes estimator ϕB of θ and the posterior loss δB(X) = E[L(θ, ϕB)|X].

The problem of estimating a loss function has been considered by Sandved [41] who
developed a notion of unbiased estimator of L(θ, ϕ(X)) in various settings. However the
underlying conditional approach traces back to Lehmann and Sheffé [34] who estimated
the power of a statistical test. Kiefer, in a series of papers ([30], [31], [32]), developed
conditional and estimated confidence theories through frequentist interpretability. A
subjective Bayesian approach was compared by Berger ([3], [4], [5]) with the frequentist
paradigm. Jonhstone [29] considered (in)admissibility of unbiased estimators of loss
for the maximum likelihood estimator ϕ0(X) = X and for the James-Stein estimator
ϕJS(X) =

(
1− (p− 2)/||X||2)X of a p-variate normal mean θ. For ϕ0(X) = X, the

unbiased estimator of the quadratic loss L(θ, ϕ0(X)) = ||ϕ0(X) − θ||2, that is, the loss
estimator δ0 which satisfies, for all θ,

Eθ[δ0] = Eθ[L(θ, ϕ0(X))] = R(θ, ϕ0) , (1.5)

is δ0 = Rϕ = p. Johnstone proved that (1.3) is satisfied with the competitive estimator
δ(X) = p − 2(p − 4)/||X||2 when p ≥ 5, the risk difference between δ0 and δ being
expressed as −4(p − 4)2Eθ[1/||X||4]. For the James-Stein estimator ϕJS, the unbiased
estimator of loss is itself data-dependent and equal to δJS

0 (X) = p − (p − 2)2/||X||2.
Jonhstone showed that improvement on δJS

0 can be obtained with δJS(X) = p − (p −
2)2/||X||2 + 2p/||X||2 when p ≥ 5, with strict inequality in (1.4) for all θ since the
difference in risk between δJS and δJS

0 equals −4p2Eθ[1/||X||2].
In Section 2, we develop the quadratic loss estimation problem for a p-normal mean.

After a review of the basic ideas, a new class of loss estimators is constructed in Subsection
2.1. In Subsection 2.2, we turn our focus on some interesting and surprising behavior
of Bayesian assessments, this paradoxical result is illustrated in a general inadmissibility
theorem. Section 3 is devoted to the case where the variance is unknown. Extensions to
the spherical case are given in Section 4. In Subsection 4.1, we consider the general case
of a spherically symmetric distribution around a fixed vector θ ∈ Rp and in Subsection
4.2 these ideas are then generalized to the case where a residual vector is available.
We conclude by mentioning a number of applied and theoretical developments of loss
estimation not covered in this overview. The Appendix gives some necessary background
material and technical results.
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2 Estimating the quadratic loss of a p-normal mean
with known variance

2.1 Dominating unbiased estimators of loss

Let X be a p-variate normal distributed N (θ, Ip) random vector with unknown mean θ
and identity covariance matrix Ip. To estimate θ, the observable X is itself a reference
estimator (it is the maximum likelihood estimator (mle) and it is an unbiased estimator
of θ) so that it is convenient to write any estimator of θ through X as ϕ(X) = X+g(X),
for a certain function g from Rp into Rp. Under squared error loss ||ϕ(X) − θ||2, the
(quadratic) risk of ϕ is defined by

R(θ, ϕ) = Eθ[||ϕ(X)− θ||2] (2.1)

where Eθ denotes the expectation with respect to N (θ, Ip).

Clearly, the risk of the mle X equals p and in general ϕ(X) will be a reasonable
estimator only if its risk is finite. It is easy to see (Lemma A.1 in Appendix A.1) through
Schwarz’s inequality that this is the case as soon as

Eθ[||g(X)||2] <∞ , (2.2)

which we will assume in the following (it can be also seen that this condition is in fact
necessary to guarantee the risk finitness).

To improve on the mle X when p ≥ 3 (that is, to have R(θ, ϕ) ≤ p), Stein [44]
exhibited (under certain differentiability conditions that we recall below) an unbiased
estimator of the risk of ϕ(X), that is, a function δ0(X) (depending only on X and not
on θ) which verifies

R(θ, ϕ) = Eθ[δ0(X)] . (2.3)

This statistic suggests a natural estimator of the loss ||ϕ(X) − θ||2 since (2.3) implies
that

Eθ[||ϕ(X)− θ||2] = Eθ[δ0(X)] (2.4)

and hence is an unbiased estimator of the loss. Stein [44] proved more precisely that
δ0(X) = p + 2 divg(X) + ||g(X)||2 (where divg(X) stands for the divergence of g(X),
that is, divg(X) =

∑p
i=1 ∂igi(X)). One can see that δ0 may change sign so that, as an

estimator of loss (which is non negative), it cannot be completely satisfactory, and hence,
is likely to be improved upon.

Any competitive loss estimator δ(X) can be written as δ(X) = δ0(X) − γ(X) for a
certain function γ(X) which can be interpreted as a correction to δ0(X). Note that, for
the mle (that is, if g(X) = 0), we may expect that an improvement on δ0(X) = p would
be obtained with a nonnegative function γ(X) satisfying the requirement expressed by
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Condition (1.3). Note also that, similarly to the finiteness risk condition (2.2), we will
require that

Eθ[γ
2(X)] <∞ (2.5)

to assure that the risk of δ(X) is finite (see Appendix A.1).

Using straightforward algebra, the risk difference D(θ, ϕ, δ) = R(θ, ϕ, δ)−R(θ, ϕ, δ0)
simplifies in

D(θ, ϕ, δ) = Eθ[γ
2(X)− 2 γ(X) δ0(X)] + 2Eθ[γ(X) ||ϕ(X)− θ||2] . (2.6)

Conditions for which D(θ, ϕ, δ) ≤ 0 will be formulated after finding an unbiased estimate
of the term γ(X) ||ϕ(X)−θ||2 in the last expectation. We briefly review the flow of ideas
of those techniques.

For a function g from Rp into Rp, the Stein’s identity (see Stein [44]) states that

Eθ[(X − θ)tg(X)] = Eθ[divg(X)] (2.7)

provided that these expectations exist. Here Stein specified that g was almost differen-
tiable. Almost differentiability is needed to integrate shrinkage functions g(X), inter-
vening in the James-Stein estimators, of the form g(X) = −aX /||X||2 which are not
differentiable in the usual sense (such g(X) explode at 0). This notion is equivalent (and
it is of more common use in analysis) to the statement that g belongs to the Sobolev space
W 1,1

loc (Rp) of weakly differentiable functions. That equivalence was noticed by Johnstone
[29].

Recall that a locally integrable function γ from Rp into R is said to be weakly differ-
entiable if, there exist p functions h1, . . . , hp locally integrable on Rp such that, for any
i = 1, . . . , p ∫

Rp

γ(x)
∂ϕ

∂xi

(x) dx = −
∫

Rp

hi(x)ϕ(x) dx (2.8)

for any infinitely differentiable function ϕ on Rp with compact support. The functions
hi are the i-th partial weak derivatives of γ. Their common notation is ∂γ/∂xi and the
vector ∇γ = (∂γ/∂x1, . . . , ∂γ/∂xp)

t is refereed to the weak gradient of γ.

Note that (2.8) usually holds when γ is continuously differentiable, that is, when
hi = ∂γ/∂xi, the standard partial derivative, is continuous. Thus, via (2.8), the extension
to weak differentiability consists in a propriety of integration by parts with vanishing
bracketed term. Naturally a function g = (g1, . . . , gp) from Rp into Rp is said to be
weakly differentiable if each of its components gj is weakly differentiable. In that case,
the function divg =

∑p
i=1 ∂gi/∂xi is refered to as the weak divergence of g; this is the

operator intervening in the Stein’s identity (2.7).

When dealing with an unbiased estimator of a quantity of the form ||X − θ||2 γ(X)
where γ is a function from Rp into R, writing

||X − θ||2 γ(X) = (X − θ)t (X − θ) γ(X) (2.9)
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naturally leads to an iteration of Stein’s identity (2.7) and involves twice weak differ-
entiability of γ. This is of course defined through the weak differentiability of all the
weak partial derivatives ∂γ/∂xi; these second weak partial derivatives are denoted by
∂2γ/∂xj∂xi. Thus γ belongs to the Sobolev space W 2,1

loc (Rp) and ∆γ =
∑p

i=1 ∂
2γ/∂x2

i is
referred to as the weak Laplacian of γ.

By (2.9) and (2.7), we have

Eθ[||X − θ||2 γ(X)] = Eθ[div((X − θ)t γ(X))]

= Eθ[p γ(X) + (X − θ)t∇γ(X)] (2.10)

by property of the divergence operator. Then, applying again (2.7) to the last term in
(2.10) gives

Eθ[(X − θ)t∇γ(X)] = Eθ[div(∇γ(X)] = Eθ[∆γ(X)] (2.11)

by definition of the Laplacian operator. Finally, gathering (2.10) and (2.11), we obtain
that

Eθ[||X − θ||2 γ(X)] = Eθ[p γ(X) + ∆γ(X)] . (2.12)

We are now in a position to provide an unbiased estimator of the difference in risk
D(θ, ϕ, δ) in (2.6). Its non positivity will be a sufficient condition for D(θ, ϕ, δ) ≤ 0 and
hence for δ to improve on δ0. Indeed we have

||ϕ(X)− θ||2 = ||X + g(X)− θ||2
= ||g(X)||2 + 2 (X − θ)t g(X) + ||X − θ||2

so that, according to (2.7) and (2.12),

Eθ[||ϕ(X)− θ||2 γ(X)] = Eθ[γ(X) ||g(X)||2 + 2 div(γ(X) g(X)) + p γ(X) + ∆γ(X)] .

Therefore, as div(γ(X) g(X)) = γ(X) divg(X) + ∇γ(X)t g(X) and as δ0(X) = p +
2 divg(X) + ||g(X)||2, the risk difference D(θ, ϕ, δ) in (2.6) reduces to

D(θ, ϕ, δ) = Eθ[γ
2(X) + 4∇γ(X)t g(X) + 2 ∆γ(X)]

so that a sufficient condition for D(θ, ϕ, δ) to be nonpositive is

γ2(x) + 4∇γ(x)t g(x) + 2 ∆γ(x) ≤ 0 (2.13)

for any x ∈ Rp.

How can one determine a “best” correction γ satisfying (2.13)? The following theorem
provides a way to associate to the function g a suitable correction γ which satisfies (2.13)
in the case where g(x) is of the form g(x) = ∇m(x)/m(x) for a certain nonnegative
function m. This is the case when ϕ is a Bayes estimator of θ related to a prior π,
the function m being the corresponding marginal (see Brown [8]). Bock [7] shows that,
through the choice of m, such estimators constitute a wide class of estimators of θ (which
are called pseudo-Bayes estimators when the function m does not correspond to a true
prior π).
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Theorem 2.1 Let m be a nonnegative function which is also superharmonic (respectively
subharmonic on Rp such that ∇m/m ∈ W 1,1

loc (Rp). Let ξ be a real valued function, strictly
positive and strictly subharmonic (respectively superharmonic) on Rp, and such that

Eθ

[(
∆ξ(X)

ξ(X)

)2
]
<∞ . (2.14)

Assume also that there exists a constant K > 0 such that, for any x ∈ Rp,

m(x) > K
ξ2(x)

|∆ξ(x)| (2.15)

and let K0 = infx∈Rp m(x) |∆ξ(x)|
ξ2(x)

.

Then the unbiased loss estimator δ0 of the estimator ϕ of θ defined by ϕ(X) = X +
∇m(X)/m(X) is dominated by the estimator δ = δ0 − γ, where the correction term γ is
given, for any x ∈ Rp such that m(x) 6= 0, by

γ(x) = −α sgn(∆ξ(x))
ξ(x)

m(x)
, (2.16)

as soon as 0 < α < 2K0.

PROOF The domination condition will be shown by proving that the risk difference is
less than zero. We only consider the case where m is superharmonic and ξ is strictly
subharmonic, the case where m is subharmonic and ξ is strictly superharmonic being
similar.

First note that the finiteness risk condition (2.5) is guaranteed by Condition (2.14)
and the fact that (2.15) implies that, for any x ∈ Rp,

γ2(x) = α2 ξ
2(x)

m2(x)
≤ α2

K2
0

(
∆ξ(x)

ξ(x)

)2

.

Also note that, for a shrinkage function g of the form g(x) = ∇m(x)/m(x), the left
hand side of (2.13) can be expressed as

Rγ(x) = γ2(x) + 2

{
2

∆(m(x) γ(x))

m(x)
− γ(x)

∆m(x)

m(x)

}
(2.17)

and hence, for γ in (2.16), as

Rγ(x) = α2 ξ
2(x)

m2(x)
+ 2α

{
−∆ξ(x)

m(x)
+
ξ(x) ∆m(x)

m2(x)

}
. (2.18)
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Now, since m is superharmonic and ξ is positive, it follows from (2.18) that

Rγ(x) ≤ α

m(x)

{
α ξ2(x)

m(x)
− 2 ∆ξ(x)

}
and hence, by subharmonicity of ξ, inequality (2.15) and definition of K0, that

Rγ(x) < α

m(x)
{α− 2K0} ξ

2(x)

m(x)
. (2.19)

Finally, since 0 < α < 2K0, Inequality (2.19) gives Rγ(x) < 0, which is the desired
result.

As an example, consider m(x) = 1/||x||p−2, that is, the fundamental harmonic func-
tion which is superharmonic on the entire space Rp (see Du Plessis [39]). Then we have
∇m(x)/m(x) = −(p − 2)/||x||2 and ϕ(X) is the James-Stein estimator whose unbiased
estimator of loss is δ0(X) = p − (p − 2)2/||X||2. First note that ∇m/m ∈ W 1,1

loc (Rp)
for p ≥ 3. Now choosing, for any x 6= 0, the function ξ(x) = 1/||x||p gives rise to
∆ξ(x) = 2 p/||x||p+2 > 0 and hence to

ξ2(x)

|∆ξ(x)| =
1

2 p

1

||x||p−2
,

which means that Condition (2.15) is satisfied with K < 2 p. Also we have(
∆ξ(x)

ξ(x)

)2

=
4 p2

||x||4
which implies that Condition (2.14) is satisfied for p ≥ 5. Now it is clear that the
constant K0 is equal to 2 p and that the correction term γ in (2.16) equals, for any x 6= 0,
γ(x) = −α/||x||2. Finally, Theorem 2.1 guarantees that an improved loss estimator over
the unbiased estimator of loss δ0(X) is δ(X) = δ0(X) +α/||x||2 for 0 < α < 4 p, which is
Johnstone’s result [29] for the James-Stein estimator.

Similarly Johnstone’s result for ϕ(X) = X can be constructed withm(x) = 1 (which is
both subharmonic and superharmonic) and with the choice of the superharmonic function
ξ(x) = 1/||x||2, for which K0 = 2 (p − 4), so that δ(x) = p − α/||x||2 dominates p for
0 < α < 4 (p− 4).

We have shown that the unbiased estimator of loss can be dominated. Often one may
wish to add a frequentist-validity constraint to a loss estimation problem. Specifically in
our problem, the frequentist-validity constraint for some estimator δ would be Eθ[δ(X)] ≥
Eθ[δ0(X)] for all θ. Kiefer [32] suggested that conditional and estimated confidence
assessments should be conservatively biased, that is, the average reported loss should be
greater than the average actual loss. Under such a frequentist-validity condition Lu and
Berger [37] give improved loss estimators for several of the most important Stein-type
estimators. One of their estimators is a generalized Bayes estimator, suggesting that
Bayesians and frequentists can potentially agree on a conditional assessment of loss.
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2.2 Dominating the posterior risk

In the previous sections, we have seen that the unbiased estimator of loss should be often
dismissed since it can be dominated. When a (generalized) Bayes estimator of θ is avail-
able, incorporating the same prior information for estimating the loss of this Bayesian
estimator is coherent, and we may expect that the corresponding Bayes estimator is a
good candidate to improve on the unbiased estimator of loss. However, somewhat sur-
prisingly, Fourdrinier and Strawderman [19] found that, in the normal setting considered
in Section 2, the unbiased estimator often dominates the corresponding generalized Bayes
estimator of loss for priors which give minimax estimators in the original point estimation
problem. They also give a general inadmissibility result for a generalized Bayes estima-
tor of loss. While much of their focus is on pseudo-Bayes estimators, in this section, we
essentially present their results on generalized Bayes estimators.

For a given generalized prior π, we denote the generalized marginal by m and the
generalized Bayes estimator of θ by

ϕm(X) = X +
∇m(X)

m(X)
. (2.20)

Then (see Stein [44]) the unbiased estimator of risk of ϕm(X) is

δ0(X) = p+ 2
∆m(x)

m(X)
− ‖∇m(X)‖2

m2(X)
(2.21)

while the posterior risk of ϕm(X) is

δm(X) = p+
∆m(X)

m(X)
− ‖∇m(X)‖2

m2(X)
. (2.22)

Domination of δ0(X) over δm(X) is obtained thanks to the fact that their risk admits
(∆m(X)/m(X))2 − 2 ∆(2)m(X)/m(X) as an unbiased estimator of their risk difference,
that is,

R(θ, ϕm, δ0)−R(θ, ϕm, δm) = Eθ

[(
∆m(X)

m(X)

)2

− 2
∆(2)m(X)

m(X)

]
(2.23)

where ∆(2)m = ∆(∆m) is the bi-Laplacian of m (see [19]). Thus the above domination
will occur as soon as (

∆m(X)

m(X)

)2

− 2
∆(2)m(X)

m(X)
≤ 0 . (2.24)

Applicability of that last condition is underlined by the remarkable fact that if the prior
π satisfies (2.24), that is, if(

∆π(θ)

π(θ)

)2

− 2
∆(2)π(θ)

π(θ)
≤ 0 , (2.25)

9



then (2.24) is satisfied for the marginal m.

As an example, [19] considers π(θ) = (‖θ‖2/2+a)−b (where a ≥ 0 and b ≥ 0) and show
that, if p ≥ 2(b + 3) then (2.25) holds and hence δu dominates δm. Since π is integrable
if and only if b > p

2
(for a > 0), the prior π is improper whenever this condition for

domination of δu over δm holds. Of course, whenever π is proper, the Bayes estimator δm
is admissible provided its Bayes risk is finite.

Inadmissibility of the generalized Bayes loss estimator is not exceptional. Thus, in
[19], the following general inadmissibility result is given; its proof is parallel to the proof
of Theorem 2.1.

Theorem 2.2 Let m be a nonnegative function such that ∇m/m ∈ W 1,1
loc (Rp). Let ξ be

a real valued function satisfying the conditions of Theorem 2.1. Then δm is inadmissible
and a class of dominating estimators is given by

δm(X) + α sgn (∆ξ(X))
ξ(X)

m(X)
for 0 < α < 2 K0 .

Note that, unlike Theorem 2.1, neither the superharmonicity condition nor the subhar-
monicity condition on m are needed. Note also that Theorem 2.2 gives conditions of
improvement on δm while Theorem 2.1 looks for improvements on δ0. As we saw that,
often, δ0 dominates δm. So it is not surprising that the proof of the two theorems are
parallel; more precisely, it suffices to suppress, in the proof of Theorem 2.1), the super-
harmonicity (or subharmonicity) condition on m to obtain the proof of Theorem 2.2.

In [19], it is suggested that the inadmissibility of the generalized Bayes (or pseudo-
Bayes) estimator is due to the fact that the loss function (δ(x) − ‖ϕ(x) − θ‖2)2 may be
inappropriate. The possible deficiency of this loss is illustrated by the following simple
result concerning estimation of the square of a location parameter in R1.

Suppose X ∈ R1 ∼ f
(
(X − θ)2

)
such that Eθ[X

4] < ∞. Consider estimation of θ2

under loss (δ−θ2)2. The generalized Bayes estimator δπ of θ2 with respect to the uniform
prior π(θ) ≡ 1 is given by

δπ(X) =

∫
θ2f

(
(X − θ)2

)
dθ∫

f
(
(X − θ)2

)
dθ

= X2 + E0 [X2] .

Since this estimator has constant bias 2E0[X
2], it is dominated by the unbiased estimator

X2 − E0[X
2] (the risk difference is 4 (E0[X

2])2). Hence δπ is inadmissible for any f(·)
such that Eθ[X

4] <∞.
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2.3 Examples of improved estimators

In this subsection, we give some examples of Theorems 2.1 and 2.2. The only example
up to this point of an improved estimator over the unbiased estimator of loss δ0(X) is
δ(X) = δ0(X) + α/||x||2 for 0 < α < 4 p, which is Johnstone’s result [29]. Although the
shrinkage factor in Theorems 2.1 and 2.2 are the same, in the examples below we will
only focus on improvements of posterior risk.

As an application of Theorem 2.2, let ξb(x) =
(‖x‖2 + a

)−b (with a ≥ 0 and b ≥ 0). It
can be shown that we have ∆ξb(x) < 0 for a ≥ 0 and 0 < 2 (b+ 1) < p. Also ∆ξb(x) > 0
if a = 0 and 2(b+ 1) > p. Furthermore

ξ2
b (x)

|∆ξb(x)| =
1

2 b
∣∣∣p− 2(b+ 1) ‖x‖2

‖x‖2+a

∣∣∣ 1

(‖x‖2 + a)b−1
.

a) Suppose that 0 < 2 (b+ 1) < p and a ≥ 0. Then

ξ2
b (x)

|∆ξb(x)| ≤
1

2 b(p− 2(b+ 1))

1

(‖x‖2 + a)b−1

and Eθ

[(
∆ξb(X)/ξb(X)

)2]
<∞ since it is bonded from above by a quantity proportional

to Eθ

[
(‖X‖2 + a)−2

]
, which is finite for a > 0 or for a = 0 and p > 4.

Suppose that m(x) is greater than or equal to some multiple of
(‖x‖2 + a

)1−b or
equivalently

m(x) ≥ k

2 b (p− 2 (b+ 1))

1(‖x‖2 + a
)b−1

(2.26)

for some k > 0. Theorem 2.2 implies that δm(X) is inadmissible and is dominated by

δm(X)− α

m(X)(‖X‖2 + a)b

for 0 < α < 4 b(p − 2(b + 1)) infx∈Rp(m(x)(‖x‖2 + a)b−1). Note that the improved
estimators shrink towards 0.

Suppose, for example, that m(x) ≡ 1. Then (2.26) is satisfied for b ≥ 1. Here
ϕm(X) = X and δm(X) = p. Choosing b = 1, an improved class of estimators is given
by p − α

‖X‖2+a
for 0 < α < 4 (p − 4). The case a = 0 is equivalent to Johnstone’s result

for this marginal.

b) Suppose that 2 (b+ 1) > p > 4 and a = 0. Then

11



ξ2
b (x)

|∆ξb(x)| =
1

2 b(2(b+ 1)− p)

1

‖x‖2(b−1)
.

A development similar to the above implies that, when m(x) is greater than or equal
to some multiple of ‖x‖2(1−b), an improved estimator is

δm(X) +
α

m(X)‖X‖2b

for 0 < α < 4 b(2 (b+ 1)− p) infx∈Rp

(
m(x)‖x‖2(b−1)

)
.

Note that, in this case, the correction term is positive and hence the estimators ex-
pands away from 0. Note also that this result only works for a = 0 and hence applies to
pseudo-marginals which are unbounded in a neighborhood of 0. Since all marginals corre-
sponding to a generalized prior π are bounded, this result can never apply to generalized
Bayes procedures but only to pseudo-Bayes procedures.

Suppose, for example, that m(x) = ‖x‖2−p. Here ϕm(X) =
(
1− p−2

‖x‖2
)
X is the

James-Stein estimator and δm(X) = p − (p−2)2

‖X‖2 . In particular, the above applies for
b − 1 = p−2

2
, that is, for b = p

2
> p−2

2
. An improved estimator is given by δm(X) + γ

‖X‖2
for 0 < γ < 4 p. This again agrees with Johnstone’s result for James-Stein estimators.

3 Estimating the quadratic loss of a p-normal mean
with unknown variance

In Section 2 is was tacitly assumed that the covariance matrix was known and equal to
the identity matrix Ip. Typically, this covariance is unknown and should be estimated.
In the case where it is of the form σ2Ip with σ2 unknown, Wan and Zou [48] show
that, for the invariant loss ||ϕ(X) − θ||2/σ2, Johnstone’s result [29] can be extended
when estimating the loss of the James-Stein estimator. In fact, the general framework
considered in Section 2 can be extended to the case where σ2 is unknown, and we show
that a condition parallel to Condition (2.13) can be found.

Before stating the main result for the unknown variance case, we need an extension
of Stein’s identity involving their sample variance.

Lemma 3.1 Let X ∼ N (θ, σ2Ip) and let S be a nonnegative random variable indepen-
dent of X such that S ∼ σ2χ2

k. Denoting by Eθ,σ2 the expectation with respect to the
joint distribution of (X,S), we have, provided the corresponding expectations exist, the
following two results:

12



(i) if g(x, s) is a function from Rp × R+ into Rp such that, for any s ∈ R+, g(·, s) is
weakly differentiable then

Eθ,σ2

[
1

σ2
(X − θ)tg(X,S)

]
= Eθ,σ2 [divXg(X,S)]

where divxg(x, s) is the divergence of g(x, s) with respect to x;

(ii) if h(x, s) is a function from Rp × R+ into R such that, for any s ∈ R+, h(·, s) is
weakly differentiable then

Eθ,σ2

[
1

σ2
h(X,S)

]
= Eθ,σ2

[
2
∂

∂S
h(X,S) + (k − 2)S−1 h(X,S)

]
.

PROOF Part (i) is Stein’s lemma 1981 (cf. [44]). Part (ii) can be seen as a particular
case of Lemma 1 (ii) (established for elliptically symmetric distributions) of Fourdrinier
et al. [20], although we will present a direct proof. The joint distribution of (X,S) can
be viewed as resulting, in the setting of the canonical form of the general linear model,
from the distribution of (X,U) ∼ N ((θ, 0), σ2Ip+k) with S = ||U ||2. Then we can write

Eθ,σ2

[
1

σ2
h(X,S)

]
= Eθ,σ2

[
1

σ2
U t U

||U ||2 h(X, ||U ||
2)

]
= Eθ,σ2

[
divU

(
U

||U ||2 h(X, ||U ||
2)

)]
according to part (i). Hence, expending the divergence term, we have

Eθ,σ2

[
1

σ2
h(X,S)

]
= Eθ,σ2

[
k − 2

||U ||2 h(X, ||U ||
2) +

U t

||U ||2 ∇Uh(X, ||U ||2)
]

= Eθ,σ2

[
k − 2

S
h(X,S) + 2

∂

∂S
h(X,S)

]
since

∇Uh(X, ||U ||2) = 2
∂

∂S
h(X,S)

∣∣∣
S=||U ||2

U .

The following theorem provides an extension of results in Section 2 to the setting of
an unknown variance. The necessary conditions to insure the finitness of the risks are
given in Appendix A.1.

Theorem 3.1 Let X ∼ N (θ, σ2Ip) where θ and σ2 are unknown and p ≥ 5 and let S
be a nonnegative random variable independent of X and such that S ∼ σ2χ2

k. Consider
an estimator of θ of the form ϕ(X,S) = X + S g(X,S) with Eθ,σ2 [S2 ||g(X,S)||2] < ∞,
where Eθ,σ2 denotes the expectation with respect to the joint distribution of (X,S).
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Then an unbiased estimator of the loss ||ϕ(X,S)− θ||2/σ2 is

δ0(X,S) = p+ S

{
(k + 2) ||g(X,S)||2 + 2 divXg(X,S) + 2S

∂

∂S
||g(X,S)||2

}
. (3.1)

Its risk R(θ, σ2, ϕ, δ0) = Eθ,σ2 [(δ0(X,S) − ||ϕ(X,S) − θ||2/σ2))2] is finite as soon as

Eθ,σ2 [S2 ||g(X,S)||4] < ∞, Eθ,σ2 [(S divXg(X,S))2] < ∞ and Eθ,σ2

[(
S2 ∂

∂S
||g(X,S)||

)2
]

<∞.

Furthermore, for any function γ(X) such that Eθ,σ2 [γ2(X)] < ∞, the risk difference
D(θ, σ2, ϕ, δ) = R(θ, σ2, ϕ, δ)−R(θ, σ2, ϕ, δ0) between the estimators δ(X,S) = δ0(X,S)−
S γ(X) and δ0(X,S) is given by

Eθ,σ2

[
S2

{
γ2(X) +

2

k + 2
∆γ(X) + 4 gt(X,S)∇ γ(X) + 4 γ(X) ||g(X,S)||2

}]
, (3.2)

so that a sufficient condition for D(θ, σ2, ϕ, δ) to be non positive, and hence for δ(X,S)
to improve on δ0(X,S), is

γ2(x) +
2

k + 2
∆γ(x) + 4 gt(x, s)∇γ(x) + 4 γ(x) ||g(x, s)||2 ≤ 0 (3.3)

for any x ∈ Rp and any s ∈ R+.

PROOF According to the expression of ϕ(X,S), its risk R(θ, ϕ) is the expectation of

1

σ2
||X − θ||2 + 2

S

σ2
(X − θ)tg(X,S) +

S2

σ2
||g(X,S||2 . (3.4)

Clearly Eθ,σ2

[
σ−2 ||X − θ||2] = p and Lemma 3.1 (i) and (ii) express respectively that

Eθ,σ2

[
1

σ2
(X − θ)tg(X,S)

]
= Eθ,σ2 [divXg(X,S)]

and, with h(x, s) = s2 ||g(x, s)||2, that

Eθ,σ2

[
S2

σ2
||g(X,S)||2

]
= Eθ,σ2

[
S

{
(k + 2) ||g(X,S)||2 + 2S

∂

∂S
||g(X,S)||2

}]
.

Therefore R(θ, ϕ) = Eθ,σ2 [δ0(X,S)] with δ0(X,S) given in (3.1), which means that
δ0(X,S) is an unbiased estimator of the loss ||ϕ(X,S) − θ||2/σ2. The fact that the
risk R(θ, σ2, ϕ, δ0) of δ0(X) is finite is shown in Lemma A.1.
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Consider now the finiteness of the risk of the alternative loss estimator δ(X,S) =
δ0(X,S)− S γ(X). It is easily seen that its difference in loss d(θ, σ2, X, S) with δ0(X,S)
can be written as

d(θ, σ2, X, S)=

(
δ0(X,S)− 1

σ2
||ϕ(X)−θ||2 − S γ(X)

)2

−
(
δ0(X,S)− 1

σ2
||ϕ(X)−θ||2

)2

= S2 γ2(X)− 2S γ(X) (δ0(X,S)− 1

σ2
||ϕ(X)− θ||2) . (3.5)

Hence, since Eθ,σ2 [||ϕ(X,S) − θ||2/σ2] < ∞ as the risk of the estimator ϕ(X,S), the
condition Eθ,σ2 [γ2(X)] <∞ insures that the expectation of the loss in (3.5), that is, the
risk difference D(θ, σ2, ϕ, δ) is finite. Then R(θ, σ2, ϕ, δ) <∞ since R(θ, σ2, ϕ, δ0) <∞.

We now express the risk difference D(θ, σ2, ϕ, δ) = Eθ,σ2 [d(θ, σ2, X, S)]. Using (3.1)
and expanding ||ϕ(X,S) − θ||2/σ2 give that d(θ, σ2, X, S) in (3.5) can be written as
d(θ, σ2, X, S) = A(X,S) +B(θ, σ2, X, S) where

A(X,S) = S2 γ2(X) − 2 p S γ(X)− 2 (k + 2)S2 γ(X) ||g(X,S)||2

− 4S2 γ(X) divXg(X,S)− 4S3 γ(X)
∂

∂S
||g(X,S)||2 (3.6)

and

B(θ, σ2, X, S) = 2
S3

σ2
γ(X) ||g(X,S)||2 + 2

S

σ2
γ(X) ||X − θ||2

+ 4
S2

σ2
γ(X) (X − θ)tg(X,S) . (3.7)

Through Lemma 3.1 (ii) with h(x, s) = 2 s3

σ2 γ(x) ||g(x, s)||2, the expectation of the
first term in the right hand side of (3.7) equals

Eθ,σ2

[
2
S3

σ2
γ(X) ||g(X,S)||2

]
= Eθ,σ2

[
2 (k + 4)S2 γ(X) ||g(X,S)||2+

4S3 γ(X)
∂

∂S
||g(X,S)||2

]
. (3.8)

Also a reiterated application of Lemma 3.1 (i) to the expectation of the second term
in the right hand side of (3.7) allows to write

Eθ,σ2

[
2
S

σ2
γ(X) ||X − θ||2

]
= Eθ,σ2 [2

1

σ2
(X − θ)t S γ(X) (X − θ)]

= Eθ,σ2 [2 divX{S γ(X) (X − θ)}]
= Eθ,σ2 [2 p S γ(X) + 2S (X − θ)t∇γ(X)]

= Eθ,σ2 [2 p S γ(X) + 2σ2 S∆γ(X)]
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which, as S ∼ σ2χ2
k entails that E[S2/(k + 2)] = E[σ2 S] and as S is independent of X,

gives

Eθ,σ2

[
2
S

σ2
γ(X) ||X − θ||2

]
= Eθ,σ2

[
2 p S γ(X) + 2

S2

k + 2
∆γ(X)

]
. (3.9)

As for the third term in the right hand side of (3.7), its expectation can also also be
expressed using Lemma 3.1 (i) as

Eθ,σ2

[
4
S2

σ2
γ(X) (X − θ)tg(X,S)

]
= Eθ,σ2 [4S2 divX{γ(X) g(X,S)}]

= Eθ,σ2 [4S2 γ(X) divX{g(X,S)}+ 4S2 g(X,S)t∇γ(X)] (3.10)

by propriety of the divergence. Finally, gathering (3.8), (3.9) and (3.10) yields an ex-
pression of (3.7) which, with (3.6), gives the integrand term of (3.2), which is the desired
result.

As an example, consider the James-Stein estimator

ϕJS(X,S) = X − p− 2

k + 2

S

||X||2X .

Here the shrinkage factor is the product of a function of S by a function of X so that,
through routine calculation, the unbiased estimator of loss is

δ0(X,S) = p− (p− 2)2

k + 2

S

||X||2 .

For a correction of the form γ(x) = −d/||x||2 with d ≥ 0, it is easy to check that the
expression in (3.3) equals

d2 + 4
p− 4

k + 2
d− 8

p− 2

k + 2
d− 4

(
p− 2

k + 2

)2

d = d

d− 4

k + 2

[
p+

(p− 2)2

k + 2

]
which is negative for 0 < d < 4

k+2

[
p+ (p−2)2

k+2

]
and gives domination of p− (p−2)2

k+2
S

||X||2 + d
||x||2

over p− (p−2)2

k+2
S

||X||2 . This condition recovers the result of Wan and Zou [48] who considered

the case d = 2
k+2

[
p+ (p−2)2

k+2

]
.
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4 Extensions to the spherical case

4.1 Estimating the quadratic loss of the mean of a spherical dis-
tribution

In the previous sections the loss estimation problem was considered for the normal distri-
bution setting. The normal distribution has been generalized in two important directions,
first as a special case of the exponential family and secondly as a spherically symmetric
distribution. In this section we will consider the latter. There are a variety of equiva-
lent definitions and characterizations of the class of spherically symmetric distributions, a
comprehensive review is given by [17]. We will use the representation of a random variable
from a spherically symmetric distribution, X = (X1, . . . , Xp)

t, as X d
= RU (p) + θ, where

R = ||X−θ|| is a random radius, U (p) is a uniform random variable on the p-dimensional
unit sphere, where R and U (p) are independent. In such situation, the distribution of
X is said spherically symmetric around θ and we write X ∼ SSp(θ). We also extend,
in Subsection 4.2, these results to the case where the distribution of X is spherically
symmetric and when a residual vector U is available (which allows an estimation of the
variance factor σ2).

Assume X ∼ SSp(θ) and suppose we wish to estimate θ ∈ Rp by a decision rule δ(X)
using quadratic loss. Suppose that we also use quadratic loss to assess the accuracy
of loss estimate δ(X), then the risk of this loss estimate is given by (1.2). In [23], the
problem of estimating the loss when ϕ(X) = X is the estimate of the location parameter
θ is considered. The estimate ϕ is the least squares estimator and is minimax among the
class of spherically symmetric distributions with bounded second moment. Furthermore
if one assumes the density of X exists and is unimodal, then ϕ is also the maximum
likelihood estimator.

The unbiased constant estimate of the loss ||X − θ||2 is δ0 = Eθ[R
2]. Note that δ0

is independent of θ, since Eθ[||X − θ||2] = E0[||X||2]. Fourdrinier and Wells [23] show
that the unbiased estimator δ0 can be dominated by δ0 − γ, where γ is a particular
superharmonic function for the case where the sampling distribution is a scale mixture
of normals and in a more general spherical case.

The development of the results depends on some interesting extensions of the classical
Stein identities in (2.7) and (2.12) to the general spherical setting. Since the distribu-
tion of X, say Pθ, is spherically symmetric around θ, for every bounded function f,
we have Eθ[f ] = E ER,θ[f ] =

∫
R+
ER,θ[f ]ρ(dR), where ρ is the distribution of the ra-

dius, namely the distribution of the norm ||X − θ|| under Pθ and where E and ER,θ

denotes respectively the expectation with respect to the radial distribution and uni-
form distribution UR,θ on the sphere SR,θ = {x ∈ Rp/ ||x − θ|| = R} of radius R
and center θ. To deduce the various risk domination results it suffices to work con-
ditionally on the radius, that is to say to replace Pθ by UR,θ in the risk expressions.
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Denote σR,θ as the area measure on SR,θ. Therefore, for every Borel measurable set
A, UR,θ(A) = σR,θ(A)/σ(SR,θ) = Γ(p/2)σR,θ(A)/2πp/2Rp−1. Define the volume measure
τR,θ on the ball BR,θ = {x ∈ E/ ||x − θ|| ≤ R} of radius R and center θ and denote
the uniform distribution on BR,θ as VR,θ. Hence, for every Borel measurable set A,
VR,θ(A) = τR,θ(A)/τR,θ(BR,θ) = pΓ(p/2)τR,θ(A)/2πp/2Rp. Suppose γ is a weakly differ-
entiable vector valued function, then by applying the Divergence Theorem for weakly
differentiable functions to the definition of the expectation we have

Eθ[(X − θ)tγ(X) | ||X − θ|| = R] =

∫
SR,θ

(x− θ)t γ(x)UR,θ(dx) (4.1)

=
R

σR,θ(SR,θ)

∫
BR,θ

div γ(x) dx.

If γ is a real valued function then it follows from (4.1) and the product rule applied to
the vector valued function (x− θ) γ(x) that

Eθ[||X − θ||2γ(X) | ||X − θ|| = R] =

∫
SR,θ

(x− θ)t (x− θ) γ(x)UR,θ(dx) (4.2)

=
R

σR,θ(SR,θ)

∫
BR,θ

[
p γ(x) + (x− θ)t∇γ(x)] dx .

Our first extension of Theorem 2.1 is to the class of spherically symmetric distri-
butions that are scale mixtures of normal distributions. Well known examples in the
class of densities include the double exponential, multivariate t-distribution (hence, the
multivariate Cauchy distribution). Let φ(x; θ, I) be the probability density function of a
random vector X with a normal distribution with mean vector θ and identity covariance
matrix. Suppose that there is a probability measure on R+ such that the probability
density function pθ may be expressed as

pθ(x|θ) =

∫ ∞

0

φ(x; θ, I/t)G(dt). (4.3)

One can think of T being a random variable with distribution G, the conditional dis-
tribution of X given T = t,X | T = t, is Np(θ, I/t). This class contains heavy tailed
distributions, possibly with no moments. It is well known (see [17]) that, if a spherical
distribution has a density pθ, it is of the form pθ(x) = g(||x − θ||2) for a measurable
positive function g (called the generating function).

In the scale mixture of normals setting the unbiased estimate, δ0, of risk equals

E[R2] = Eθ[||X − θ||2] = p

∫ ∞

0

t−1G(dt).
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It is easy to see that the risk of the unbiased estimator δ0 is finite if and only if Eθ[||X −
θ||4] <∞, which holds if ∫ ∞

0

t−2G(dt) <∞. (4.4)

The main theorem in [23] is the following domination result of an improved estimator
of loss over the unbiased loss estimator.

Theorem 4.1 Assume the distribution of X is a scale mixture of a normal random
variables as in (4.3) such that (4.4) is satisfied and such that∫

R+

tp/2G(dt) <∞ . (4.5)

Also, assume that the shrinkage function γ is twice weakly differentiable on Rp and sat-
isfies Eθ[γ

2] < ∞, for every θ ∈ Rp. Then a sufficient condition for δ0 − γ to dominate
δ0 is that γ satisfies the differential inequality

k∆γ + γ2 < 0 with k = 2

∫
R+
tp/2G(dt)∫

R+
tp/2−2G(dt)

. (4.6)

As an example let γ(x) = c/||x||2 where c is a positive constant. Note that γ is only
twice weakly differentiable (but not twice differentiable in the usual sense) only when
p > 4 (thus its Laplacian exists as a locally integrable function). Then it may be shown
that ∆γ(x) = −2c(p−4)/||x||4. Hence k∆(x)+γ2(x) = −2kc(p−4)/||x||4 +c2/||x||4 < 0
if −2kc(p − 4) + c2 < 0, that is, 0 < c < 2k(p − 4). It is easy to see that the optimal
value of c for which this inequality is the most negative equals k(p− 4), so an interesting
estimate in this class of γ’s is δ = δ0 − k(p − 4)/||x||2(p > 4). This is precisely the
estimate proposed by [29] in the normal distribution case Np(θ, I) where k = 2; recall, in
that case δ0 = p.

In this example, we have assumed that the dimension p is greater than four. In general
we can have domination as long as the assumptions of the theorem are valid. Actually,
Blanchard and Fourdrinier [6] show explicitly that, when p ≤ 4, the only solution γ in
L2

loc(R
p) of the inequality k∆γ + γ2 ≤ 0 is γ ≡ 0, almost everywhere with respect to

the Lebesgue measure λ. Now, in the normal case Np(θ, I/t), an unbiased estimator of
the risk difference between an estimator δ = δ0 − γ and δ0 is 2t−2∆γ + γ2. Hence, for
dimensions four or less, it is impossible to find an estimator δ = δ0 − γ whose unbiased
estimate of risk is always less that of δ0. Indeed we cannot have Eθ[2t

−2∆γ+γ2] < 0, for
some θ, without having λ[t−2∆γ(x)+ γ2(x) < 0] > 0, which entails that λ[γ(x) 6= 0] > 0.

In the case of scale mixture of normal distributions, the conjecture of admissibility of
δ0 − γ for lower dimensions, although it is probably true, remains open. Indeed, under
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conditions of Theorem 4.1, k∆γ + γ2 is no longer an unbiased estimator of the risk
difference and Eθ[k∆γ + γ2] is only its upper bound. The use of Blyth’s method would
need to specify the distribution of X (that is, the mixture distribution G). It is worth
noting that dimension-cutoff also arises through the finiteness of Eθ[γ

2] when using the
classical shrinkage function c/||x||2.

In order to prove Theorem 4.1 we need some additional technical results. The first
lemma gives some important properties of superharmonic functions and is found in Du
Plessis [39] and the second lemma links the integral of the gradient on a ball with the
integral of the Laplacian.

Lemma 4.1 If γ is a real valued superharmonic function then

(i)
∫

SR,θ
γ(x)UR,θ(dx) ≤

∫
BR,θ

γ(x)VR,θ(dx).

(ii) Both of the integrals in (i) are decreasing in R.

PROOF See Sections 1.3 and 2.5 in [39].

Lemma 4.2 Suppose γ is a twice weakly differentiable function. Then

∫
BR,θ

(x− θ)t∇γ(x)VR,θ(dx) =
pΓ(p/2)

2πp/2

1

Rp

∫ R

0

r

∫
Br,θ

4γ(x)dxdr.

PROOF Since the density of the distribution of the radius under VR,θ is (p/Rp)rp−11l[0,R](r),
we have∫

BR,θ

(x− θ)t∇γ(x)VR,θ(dx) =

∫ R

0

∫
Sr,θ

(x− θ)t∇γ(x)Ur,θ(dx)
p

Rp
rp−1dr.

The result follows from applying (4.1) to the inner most integral of the right hand side
of this equality and by recalling the fact that σr,θ(Sr,θ) = (2πp/2/Γ(p/2))rp−1.

PROOF OF THEOREM 4.1 Denoting by ρ the distribution of the radius ||X − θ||, the risk
difference between δ0 and δ0 − γ equals α(θ) + β(θ) where

α(θ) =

∫
R+

αR(θ) ρ(dR) and β(θ) =

∫
R+

βR(θ) ρ(dR) (4.7)

with

αR(θ) = 2R2

∫
BR,θ

γ(x)VR,θ(dx)− 2λ0

∫
SR,θ

γ(x)UR,θ(dx) (4.8)
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and

βR(θ) = 2
R2

p

∫
BR,θ

(x− θ)t∇γ(x)VR,θ(dx) +

∫
SR,θ

γ2(x)UR,θ(dx) . (4.9)

Indeed, the risk difference conditional on the radius R equals∫
SR,θ

[
2 ||x− θ||2 γ(x)− 2λ0 γ(x) + γ2(x)

]
UR,θ(dx)

and the result follows from (4.2) applied to the first term between brackets.

Let us first deal with α(θ) considering the first term in (4.8). We have from the
definition of VR,θ and an application of Fubini’s theorem∫

R+

R2

∫
BR,θ

γ(x)VR,θ(dx) ρ(dR) = p
Γ(p/2)

2πp/2

∫
R+

R2−p

∫
BR,θ

γ(x) dx ρ(dR)

= p
Γ(p/2)

2πp/2

∫
Rp

γ(x)

∫ +∞

||x−θ||
R2−p ρ(dR) dx (4.10)

Now, for fixed t ≥ 0, in the normal case Np(θ, I/t) the distribution ρt of the radius has
the density ft of the form ft(R) = tp/2

2p/2−1Γ(p/2)
Rp−1 exp{− tR2

2
} and δ0 = p

t
. Thus the

expression (4.10) becomes∫
R+

R2

∫
BR,θ

γ(x)VR,θ(dx) ρ(dR) =
p tp/2

(2π)p/2

∫
Rp

γ(x)

∫ +∞

||x−θ||
R exp

{
−tR

2

2

}
dRdx

=
p tp/2−1

(2π)p/2

∫
Rp

γ(x) exp

{
− t

2
||x− θ||2

}
dx

=
p

t

∫
R+

∫
SR,θ

γ(x)UR,θ(dx) ρt(dR),

the last equality holding since X D
= RU (p). Turning back to (4.7) and (4.8) and using the

mixture representation with mixing distribution G, the expression of α(θ) is written as

α(θ) = 2p

∫
R+

(
1

t
− δ0
p

)∫
Rp

γ(x)

(
t

2π

)p/2

exp

(
− t

2
||x− θ||2

)
dxG(dt). (4.11)

It can be easily seen that the inner most integral in (4.11) is proportional to∫ ∞

0

∫
S

(u/t)1/2,θ

γ(x) dUS
(u/t)1/2,θ

up/2−1 exp

(
−u

2

)
du

and hence is non decreasing in t by superharmonicity of γ induced by Inequality (4.6)
and by Lemma 4.1 (ii). Thus, since δ0 = p/t for fixed t, the expression for α(θ) in (4.11)
is a non positive covariance with respect to G.
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We can now treat the integral of the expression β(θ) in the same manner. The
function x→ (x− θ)t∇γ(x) and the function x→ ∇γ(x) taking successively the role of
the function γ, we obtain∫

R+

R2

p

∫
BR,θ

(x− θ)t∇γ(x)VR,θ(dx)ρt(dR) =
1

t

∫
R+

∫
SR,θ

(x− θ)t∇γ(x)UR,θ(dx)ρt(dR)

=
1

t

∫
R+

R2

p

∫
BR,θ

∇γ(x)dxρt(dR)

=
tp/2−2

(2π)p/2

∫
Rp

∇γ(x) exp

{
− t

2
||x− θ||2

}
dx

applying (4.1) for the second equality and remembering that 4γ = div(∇γ). Therefore
by Fubini Theorem β(θ) can be reexpressed as

β(θ) =

∫
Rp

24 γ(x)

∫
R+
tp/2−2 exp(−t||x− θ||2/2)G(dt)∫

R+
tp/2 exp(−t||x− θ||2/2)G(dt)

+ γ2(x)


×

∫
R+

(
t

2π

)p/2

exp

(
− t

2
||x− θ||2

)
G(dt) dx. (4.12)

Now, through a monotone likelihood ratio argument, the ratio of integrals in (4.12) can
be seen bounded from below by the constant k in (4.6). Hence Inequality (4.6) gives

β(θ) ≤
∫

Rp

(k4 γ(x) + γ2(x))

∫
R+

(
t

2π

)p/2

exp

(
− t

2
||x− θ||2

)
G(dt) dx < 0 .

Finally, remembering that α(θ) is non positive, it follows that the risk difference
α(θ) + β(θ) between δ0 and δ0 − γ is negative, which proves the theorem.

The improved loss estimator result in Theorem 4.1 for scale mixture of normal dis-
tributions family was extended to the more general family of spherically symmetric dis-
tributions in [23]. In this setting the conditions for improvement rest on the generating
function g of the spherical density pθ. A sufficient condition for domination of δ0 has the
usual form k∆γ + γ2 ≤ 0.

Theorem 4.2 Assume the spherical distribution of X with generating function g has fi-
nite fourth moment. Assume the function γ is nonnegative and twice weakly differentiable
on Rp and satisfies Eθ[γ

2] <∞. If, for every s ≥ 0,

∫∞
s
g(z) dz

2 g(s)
≤ δ0

p
(4.13)

and if there exists a constant k such that, for any s ≥ 0,
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0 < k <

∫∞
s
zg(z)dz − s

∫∞
s
g(z)dz

2g(s)
. (4.14)

Then a sufficient condition for δ0 − γ to dominate δ0 is that γ satisfies the differential
inequality

k∆γ + γ2 < 0 .

We have shown that one can dominate the unbiased constant estimator of loss by
a shrinkage-type estimator. As in the normal case one may wish to add a frequentist-
validity constraint to the loss estimation problem. It is easy to show that the only
frequentist valid estimator of the form δ0 would be the only frequentist valid loss estima-
tor. The proof of this result follows from a randomization of the origin technique as in
Hsieh and Hwang [27].

4.2 Estimating the quadratic loss of the mean of a spherical dis-
tribution with a residual vector

In this subsection, we extend the ideas of the previous sections to a spherically symmetric
distribution with a residual vector. We first develop an unbiased estimator of the loss
and then construct a dominating shrinkage-type estimator. An important feature of our
results is that the proposed loss estimates dominate the unbiased estimates for the entire
class of spherically symmetric distributions. That is, the domination results are robust
with respect to spherical symmetry.

Let (X,U) ∼ SS(θ, 0) where dimX = dim θ = p and dimU = dim 0 = k (p + k =
n). For convenience representation, here (X,U) and (θ, 0) represent n × 1 vectors (see
Appendix A.2 for more details on this model). Unlike Subsection 4.1, the dimension of
the observable (X,U) is greater than the dimension of the estimand θ. This model arises
as the canonical form of the following seemingly more general model, the general linear
model. Let V be an n× p matrix (of full rank p) which is often referred to as the design
matrix. Suppose an n× 1 vector Y is observed such that Y = V β + ε where β is a p× 1
vector of (unknown) regression coefficients and ε is an n × 1 vector with a spherically
symmetric distribution about 0. A common alternative representation of this model is
Y = η + ε where ε is as above and η is in the column space of V.

To understand this representation in terms of the general linear model, let G =
(Gt

1, G
t
2)

t be an n× n orthogonal matrix partitioned such that the first p rows of G (i.e.
the rows of G1 considered as column vectors) span the column space of V . Now let(

X
U

)
=

(
G1

G2

)
Y =

(
G1

G2

)
V β +Gε =

(
θ
0

)
+Gε
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with θ = G1V β and G2V β = 0 since the rows of G2 are orthogonal to the columns of V .
It follows from the definition that (X,U) has a spherically symmetric distribution about
(θ, 0). In this sense, the model given above is the canonical form of the general linear
model.

The usual estimator of θ is the orthogonal projector X. A class of competing point
estimators which are also considered are of the form ϕ = X − ||U ||2g(X), g is a measur-
able function from Rp into Rp. This class of estimators is closely related to a Stein-like
estimators (when estimating the mean of a normal distribution, the square of the residual
term ||u|| is used as an estimate of the unknown variance). Their domination properties
are robust with respect to spherical symmetry (cf. [9] and [10]). We will first consider
estimation of the loss of the usual least squares estimator X then estimation of the loss of
the more general shrinkage estimator ϕ. In order to assure the finiteness of their risk of
the usual estimator X and the risk of the shrinkage estimator ϕ, we need two hypotheses
(H1) and (H2) given in [9].

In the spherical case in Section 3, the risk of X was constant with respect to θ. Thus
this risk provides an unbiased estimator of the loss, that is, p

n
E[R2], which is subject

to the knowledge of E[R2]. Its properties, as the properties of any improved estimator,
may depend on the specific underlying distribution. An important feature of the results
in this subsection is that we propose an unbiased estimator δ0 of the loss of X which is
available for every spherically symmetric distribution (with finite fourth moment), that
is, δ0(X,U) = p ||U ||2/k. Thus we do not need to know the specific distribution, and
we get robustness with an estimator which is no longer constant. Notice δ0 makes sense
because p < n (i.e. k ≥ 1).

In this subsection, we consider estimation of θ by X so that, as in Fourdrinier and
Wells [22], we deal with estimating the loss ||X−θ||2. An unbiased estimator of that loss
is given by δ0(X,U) = p ||U ||2/k, that we write δ0(U) since it depends only on U . The
unbiasedness of δ0 follows from Corollary A.1 by taking q = 0 and γ ≡ 1. The goal of
this subsection is to prove the domination of the unbiased estimator δ0 by a competing
estimator δ of the form

δ(X,U) = δ0(U)− ||U ||4 γ(X), (4.15)

where γ is a non negative function. It is important to notice that the “residual term”
||U || appears explicitly in the shrinkage function. It has been noted in [9] that the use of
this term allows fewer assumptions about the distributions than when it does not appear.
Specifically, this including gives a robustness property to the results, since they are valid
for the entire class of spherically symmetric distributions.

We require the real-valued function γ to be twice weakly differentiable, in order to
include basic examples, which are not twice differentiable. The following domination
result is given in [22]. We will see below that it appears as a consequence of a more
general result when shrinkage estimator of θ are involved.
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Theorem 4.3 Assume that p ≥ 5, the distribution of (X,U) has a finite fourth moment
and the function γ is twice weakly differentiable on Rp and there exists a constant β
such that γ(t) ≤ β/||t||2. A sufficient condition under which the estimator δ in (4.15)
dominates the unbiased estimator δ0 is that γ satisfies the differential inequality

γ2 +
2

(k + 4)(k + 6)
4 γ ≤ 0 . (4.16)

The standard example where γ(t) = d/||t||2 for all t 6= 0 with d > 0 satisfies the
conditions of the theorem. More precisely it is easy to deduce that 4γ(t) = −2 d (p −
4)/‖|t||4 and thus the sufficient condition of the theorem is written as 0 < d ≤ 4 (p −
4)/(k + 4)(k + 6), which only occurs when p ≥ 5. Straightforward calculus shows that
the optimal value of d is given by 2 (p − 4)/(k + 4)(k + 6). The optimal constant in [9]
is equal to 2 (p− 4). The extra terms in the denominator compensate for the ||U ||4 term
in our estimator.

We will now consider the estimation of the loss of a class of shrinkage estimators
considered in [9] (with a slight modification of their form in order to have notations
coherent with these of the previous sections), that is, location estimators of the form

ϕg = X + ||U ||2 g(X), (4.17)

where g is a weakly differentiable function from Rp into Rp. In [9] it is shown that, if
||g||2 ≤ −2 divg/(k + 2), then ϕg dominates X, under quadratic loss for all spherically
symmetric distributions with a finite second moment. A general example of a member of
this class of estimators is with g(X) = −r(||X||2)A(X)

b(X)
, where r is a positive differentiable

and nondecreasing function, A is a positive definite symmetric matrix and b is a positive
definite quadratic form of Rp. When r is equal to some constant a, A is the identity
on Rp and the quadratic form b is the usual norm, g reduces to a/||X||2. It can be
shown that the optimal choice of a equals (p − 2)/(k + 2). A member of the class is
ϕr = X− (p−2) ||U ||

2

k+2
X

||X||2 , the James-Stein estimator used when the variance is unknown
as in Section 3.

In Proposition 2.3.1 of Section 2.3 of [9], it is shown that an unbiased estimator of
the loss of the shrinkage estimator ϕg is given by

δg
0(X,U) =

p

k
||U ||2 +

(
||g(X)||2 +

2

k + 2
divg(X)

)
||U ||4. (4.18)

As in Theorem 4.3 above, the unbiased estimator of the loss can be improved by a
shrinkage estimator of the loss. Thus the competing estimator we consider is

δg
γ(X,U) = δg

0(X,U)− ||U ||4 γ(X), (4.19)

where γ is a non negative function. Note that (4.19) is a true shrinkage estimator, while
Johnstone’s [29] optimal loss estimate for the normal case is an expanding estimator.

25



This is not contradictory since we are using a different estimator than Johnstone and he
is only dealing with the normal case. If g ≡ 0 the following result reduces to Therem 4.3.

Theorem 4.4 Assume that p ≥ 5, the distribution of (X,U) has a finite fourth moment
and the function γ is twice weakly differentiable on Rp and there exists a constant β such
that γ(t) ≤ β/||t||2. A sufficient condition under which the estimator δg

γ given in (4.19)
dominates the unbiased estimator δs

0 is that γ satisfies the differential inequality

γ2 − 4

k + 2
γ divg +

4

k + 6
div(γ g) +

2

(k + 4)(k + 6)
4 γ ≤ 0 . (4.20)

PROOF Since the distribution of (X,U) is spherically symmetric around θ, it suffices
to obtain the result working conditionally on the radius. For R > 0 fixed, we can
compute using the uniform distribution UR,θ on the sphere SR,θ. Thus the conditional
risk difference between δg

γ and δg
0 , according to (4.19), equals

ER,θ

[
(δg

γ(X,U)− ||ϕ(X,U)− θ||2)2
]
− ER,θ

[
(δg

0(X,U)− ||ϕ(X,U)− θ||2)2
]

=

ER,θ

[||U ||8 γ2(X)
]− ER,θ

[
2 ||U ||4γ(X)(δg

0(X,U)− ||ϕ(X,U)− θ||2)]
that is, expanding and separating the integrand terms depending on θ,

ER,θ

[
||U ||8 γ2(X)− 2

p

k
||U ||6 γ(X)− 4

k + 2
||U ||8 divg(X)

]
+

ER,θ

[
4 ||U ||6 (X − θ)tγ(X) g(X)

]
+ ER,θ

[
2 ||U ||4 ||X − θ||2γ(X)

]
,

according to (4.18) (note that the two terms involving ||g(X)||2 cancel). Now we have

ER,θ

[
4 ||U ||6 (X − θ)tγ(X) g(X)

]
=

4

k + 6
ER,θ

[||U ||8 div (γ(X) g(X))
]

according to Lemma A.2 and

ER,θ

[
2 ||U ||4 ||X − θ||2γ(X)

]
=ER,θ

[
2 p

k + 4
||U ||6 γ(X) +

2

(k + 4)(k + 6)
||U ||84γ(X)

]
according to Corollary A.1. Therefore the above conditional risk difference is equal to

ER,θ

[
||U ||8

(
γ2(X)− 4

k + 2
divg(X) +

4

k + 6
div (γ(X) g(X)) +

2

(k + 4)(k + 6)
4γ(X)

)]

+ER,θ

[
2 p

(
1

k − 4
− 1

k

)
||U ||6 γ(X)

]
which is bounded above by the first expectation since the function γ is non negative.
Hence, the sufficient condition for domination is (4.20) in order that the inequality
R(δg, θ, ϕ) ≤ R(δg

0 , θ, ϕ) holds.
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5 Discussion

There are several areas of the theory of loss estimation that we have not discussed. Our
primary focus has been on location parameters for the multivariate normal and spherical
distributions. Loss estimation for exponential families is addressed in Lele [35] [36] and
Rukhin [40]. In [35] and [36] Lele develops improved loss estimators for point estimators
in the general setup of Hudson’s [28] subclass of continuous exponential family. Hudson’s
family essentially includes distributions for which the Stein-like identities hold; explicit
calculations and loss estimators are given for the gamma distribution, as well as for
improved scaled quadratic loss estimators in the Poisson setting for the Clevenson-Zidak
[11] estimator. Rukhin [40] studies the posterior loss estimator for a Bayes estimate
(under quadratic loss) for the canonical parameter of a linear exponential family.

As point out in the introduction, in the known variance normal setting Johnstone [29]
used a version of Blyth’s lemma to show that the constant loss estimate p is admissible if
p ≤ 4. Lele [36] give some additional sufficient conditions for admissibility in the general
exponential family and works out the precise details for the Poisson model. Rukhin [40]
considers loss functions for the simultaneous estimate of θ and L(θ, ϕ(X)) and deduced
some interesting admissibility results.

A number of researchers have investigated improved estimators of a covariance ma-
trix, Σ, under the Stein loss, LS(Σ̂,Σ) = tr(Σ̂Σ−1) − log |Σ̂Σ−1| − p, using an unbiased
estimation of risk technique. In the normal case, [13], [24], [43], [45], and [46] propose
improved estimators that dominate the sample covariance under LS(Σ̂,Σ). In [33], it
is shown that the domination of these improved estimators over the sample covariance
estimator are robust with respect to the family of elliptical distributions. To date, there
has not been any work on improving the unbiased estimate of LS(Σ̂,Σ).

In addition to the theoretical ideas there are very practical applications of loss es-
timation. The primary application of loss estimation ideas is to model selection. It is
shown in Fourdrinier and Wells [21] that improved loss estimators gives more accurate
model selection procedures. In linear models the notion of degrees of freedom plays the
important role as a model complexity measure in various model selection criteria, such
as Akaike information criterion (AIC) [1] , Mallow’s Cp [38], and Bayesian information
criterion (BIC) [42], and generalized cross-validation (GCV) [12]. In regression the de-
grees of freedom are the trace of the so-called "hat" matrix. Efron ([15]) pointed out
that the theory of Stein’s unbiased risk estimation is central to the ideas underlying the
calculation of the degrees of freedom of certain regression estimators.

Specifically, let Y be a random vector having a n-variate normal distributionN(θ,σ2In)
with unknown p-dimensional mean θ and identity covariance matrix σ2In. Let θ̂ = ϕ(Y )
be an estimate of θ. In regression one focuses is how accurate ϕ can be in predicting using
a new response vector ynew. Under the quadratic loss, the prediction risk is E{||Y new −
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θ||2}/n. Efron [15] notes that

E{||ϕ− θ||2} = E{||Y − ϕ(Y )||2 − nσ2}+ 2
n∑

i=1

Cov(ϕi, Yi). (5.1)

This expression suggests a natural definition of the degrees of freedom for an estimator ϕ
as df(ϕ) =

∑n
i=1 Cov(ϕi, Yi)/σ

2 = Eθ[(Y − θ)tϕ(Y )]/σ2. Thus one can define a Cp-type
quantity

Cp(ϕ) =
||Y − ϕ||2

n
+

2df(ϕ)

n
σ2 (5.2)

which has the same expectations as the true prediction error but may not be an estimate
if df(ϕ) and σ2 are unknown. However if ϕ is weak differentiable and σ̂2 is an unbiased
estimate of σ2, the integration by parts formula in Lemma 3.1 implies that df(ϕ) σ2 =
Eθ[divϕ(Y ) σ̂2], hence divϕ σ̂2 is unbiased estimate for the complexity parameter term,
df(ϕ) σ2, in (5.2). Therefore an unbiased estimate for the prediction error is

C∗
p(ϕ) =

||Y − ϕ||2
n

+
2divϕ

n
σ̂2. (5.3)

Note that if ϕ is a linear estimator (ϕ = Sy for some matrix S independent of Y )
then it is easy to show that this definition coincides with the definition of generalized
degrees of freedom given by Hastie and Tibshirani [25] since divϕ = tr(S). Note that if
ϕ also depends on σ̂2 then (5.1) needs to be augmented by additional derivative terms
with respect to σ̂2 as in the proof of Theorem 3.1.

Other approaches for estimating the complexity term penalty involve the use of re-
sampling methods ([15] [49]) to directly estimate the prediction error. A K-fold cross-
validation randomly divides the original sample into K part, and rotates through each
part as a test sample and uses the remainder as a training sample. Cross-validation
provides an approximately unbiased estimate of the prediction error, although the its
variance can be large. Other commonly used resampling techniques are the nonparamet-
ric and parametric bootstrap methods.

A number of new regularized regression methods have been recently been developed,
starting with Ridge regression [26], followed by the Lasso [47], the Elastic Net [50], and
LARS [16]. Each of these estimates are weakly differentiable and have the form of a
general shrinkage estimate, thus the prediction error estimate in (5.3) may be applied to
construct a model selection procedure. Zou, Hastie and Tibshirani [51] use this idea to
develop a model selection method for the Lasso. In some situations verifying the weak
differentiability of ϕ may be complicated.

Loss estimates have been used to derive nonparametric penalized empirical loss esti-
mates in the context of function estimation, which adapt to the unknown smoothness of
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the function of interest. See Barron et al. [2] and Donoho and Johnstone [14] for more
details.

In the previous sections, the usual quadratic loss L(θ, ϕ(x)) = ||ϕ(x) − θ||2 was
considered to evaluate various estimators ϕ(X) of θ. The squared norm ||x − θ||2 was
crucial in the derivation of the properties of the loss estimators in conjonction with its
role in the normal density or, more generally, in a spherical density. Other losses are
thinkable but, to deal with tractable calculations, it matters to keep the Euclidean norm
as a component of the loss in use. Hence a natural extension is to consider losses which are
function of ||x−θ||2, that is, of the form c(||x−θ||2) for a non-negative function c defined
on R+. The problem of estimating a function c of ||x − θ||2 was tackled by Fourdrinier
and Lepelletier [18] whose refer to for more details. In particular, they focus on the
fact that estimating c(||x− θ||2) can be view as an evaluation of a quantity which is not
necessarily a loss. Indeed it includes the problem of estimating the confidence statement
of the usual confidence set {θ ∈ Rp / ‖x− θ‖2 ≤ cα} with confidence coefficient 1− α: c
is the indicator function 11[0,cα] .

Appendix

A.1 Risk finiteness conditions

Lemma A.1 1. Let X ∼ N (θ, Ip), where θ is unknown, and denote by Eθ the expectation
with respect to the distribution of X. Consider an estimator of θ of the form ϕ(X) =
X + g(X) where g is a function from Rp into Rp.

a. If g is such that Eθ[||g(X)||2] < ∞, then the quadratic risk of ϕ(X), that is,
R(θ, ϕ) = Eθ[||ϕ(X)− θ||2], is finite.

b. If, in addition, the function g is weakly differentiable so that δ0(X) = p +
2 divg(X) + ||g(X)||2 is an unbiased estimator of the loss ||ϕ(X) − θ||2, then the risk
of δ0(X) defined by R(θ, ϕ, δ0) = Eθ[(δ0(X) − ||ϕ(X) − θ||2))2] is finite as soon as
Eθ[||g(X)||4] <∞ and Eθ[(divg(X))2] <∞.

2. Let X ∼ N (θ, σ2Ip), where θ and σ2 are unknown, let S be a nonnegative random
variable independent of X and such that S ∼ σ2χ2

n and denote by Eθ,σ2 the expectation
with respect to the joint distribution of (X,S). Consider an estimator of θ of the form
ϕ(X,S) = X + S g(X,S) where g is a function from Rp ×R+ into Rp.

a. If g is such that Eθ,σ2 [S2 ||g(X,S)||2] < ∞, then the quadratic risk of ϕ(X), that
is, R(θ, σ2, ϕ) = Eθ,σ2 [||ϕ(X,S)− θ||2/σ2], is finite.
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b. If, in addition, the function g is weakly differentiable so that

δ0(X,S) = p+ S

{
(n+ 2) ||g(X,S)||2 + 2 divXg(X,S) + 2S

∂

∂S
||g(X,S)||2

}
.

is an unbiased estimator of the loss ||ϕ(X,S) − θ||2/σ2, then the risk of δ0(X,S) de-
fined by R(θ, σ2, ϕ, δ0) = Eθ,σ2 [(δ0(X,S) − ||ϕ(X,S) − θ||2/σ2))2] is finite as soon as

Eθ,σ2 [S2 ||g(X,S)||4] <∞, Eθ,σ2 [(S divg(X,S))2] <∞ and Eθ,σ2

[(
S2 ∂

∂S
||g(X,S)||

)2
]
.

PROOF 1.a. The loss of ϕ(X) can be expanded as

||ϕ(X)− θ||2 = ||X − θ||2 + ||g(X)||2 + 2(X − θ)tg(X) . (A.4)

Now we have Eθ[||X − θ||2] = p < ∞. Hence, by Schwarz’s inequality, it follows from
(A.4) that |Eθ[(X − θ)tg(X)]| ≤ (Eθ[||X − θ||2])1/2 (Eθ[||g(X)||2])1/2. Therefore, as soon
as Eθ[||g(X)||2] <∞, we will have |Eθ[||ϕ(X)− θ||2] <∞. This is the desired result.

b. Note that, under the usual domination condition, that is, 2 divg(x) + ||g(x)||2 ≤
0 for any x ∈ Rp, of δ0(X) over X, the condition Eθ[(divg(X))2] < ∞ implies that
Eθ[||g(X)||4] <∞). We will have R(θ, ϕ, δ0) = Eθ[(δ0(X)−||ϕ(X)−θ||2))2] <∞ as soon
as Eθ[δ

2
0(X)] < ∞ and Eθ[||ϕ(X) − θ||4] < ∞. Now Eθ[δ

2
0(X)] = Eθ[(p + 2 divg(X) +

||g(X)||)2] < ∞ since Eθ[(divg(X))2] < ∞ and Eθ[||g(X)||4] < ∞. Also according to
(A.4)

Eθ[||ϕ(X)− θ||4] = Eθ[(||X − θ||2 + ||g(X)||2 + 2(X − θ)tg(X))2] <∞

since Eθ[||X−θ||4] <∞ and Eθ[||g(X)||4] <∞ and, consequently, since |(X−θ)tg(X)| ≤
||X − θ|| ||g(X)|| implies that

Eθ[|(X − θ)tg(X)|2] ≤ Eθ[||X − θ||2 ||g(X)||2]
≤ (

Eθ[||X − θ||4])1/2 (
Eθ[||g(X)||4])1/2

by the Schwarz’s inequality.

2.a. Parallel to the case where the variance σ2 is known, it should be noticed that
the corresponding domination condition of δ(X,S) over δ0(X,S), that is, for any x ∈ Rp

and any s ∈ R+, (n + 2) ||g(x, s)||2 + 2 divxg(x, s) + 2 s ∂
∂s
||g(x, s)||2 ≤ 0, entails that

the two conditions Eθ,σ2 [(S divg(X,S))2] <∞ and Eθ,σ2

[(
S2 ∂

∂S
||g(X,S)||

)2
]

imply the

condition Eθ,σ2 [S2 ||g(X,S)||4] < ∞. Also the derivation of the finitness of R(θ, σ2, ϕ)
follows a similar way than in 1.a.

b. We will have R(θ, σ2, ϕ, δ0) = Eθ,σ2 [(δ0(X,S)−||ϕ(X)−θ||2/σ2))2] <∞ as soon as
Eθ,σ2 [(δ0(X,S))2 < ∞ and Eθ,σ2 [||ϕ(X) − θ||4] < ∞. Now Eθ,σ2 [(δ0(X,S))2 = Eθ,σ2 [p +
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S
{

(n+ 2) ||g(X,S)||2 + 2 divXg(X,S) + 2S ∂
∂S
||g(X,S)||2

}
] < ∞ since we assume that

Eθ,σ2 [(S divXg(X,S))2] <∞ and Eθ,σ2 [S2 ||g(X,S)||4] <∞. Also Eθ,σ2 [||ϕ(X,S)−θ||4] =
Eθ,σ2 [(||X − θ||2 +S2||g(X,S)||2 + 2S(X − θ)tg(X,S))2])2] <∞ since Eθ[||X − θ||4] <∞
and Eθ,σ2 [S2 ||g(X,S)||4] <∞ (note that |(X − θ)tg(X,S)| ≤ ||X − θ|| ||g(X,S)|| implies
that

Eθ,σ2 [|(X − θ)tS g(X,S)|2] ≤ Eθ,σ2 [||X − θ||2 S2 ||g(X,S)||2]
≤ (

Eθ,σ2 [||X − θ||4])1/2 (
Eθ,σ2 [S2 ||g(X,S)||4])1/2

by the Schwarz’s inequality).

A.2 Additional Technical Lemmas

This Appendix gives some technical results used in Subsection 4.2. The first two results
deal with expectations conditioned on the radius of a spherically symmetric distribution
in Rp ×Rk centered at (θ, 0) where θ ∈ Rp. These expectations reduce to integrals with
respect to the uniform distribution UR,θ on the sphere

SR,θ =
{
y = (x, u) ∈ Rp ×Rk/

(‖x− θ‖2 + ‖u‖2
)1/2

= R
}
.

If ER,θ[ψ] is the expectation of some function ψ with respect to UR,θ, the expectation
with respect to the entire distribution is given by Eθ[ψ] = E

[
ER,θ[ψ]

]
where E is the

expectation with respect to the distribution of the radius.

When the spherical distribution has a density with respect to the Lebesgue measure,
it is necessarily of the form f

(‖x− θ‖2 + ‖u‖2
)

for some function f . Then the radius
has density R → σp+kf(R2)Rp+k−1 where σp+k = 2πp+k

Γ( p+k
2 )

. Therefore the expectation of

any function ψ can be written as

Eθ[ψ] =

∫ ∞

0

[∫
SR,θ

ψ(y)UR,θ(dy)

]
f(R)dR .

Note that for a vector y = (x, u) ∈ SR,θ, we have x = π(y) and ‖u‖2 = R2−‖π(y)−θ‖2

where π is the orthogonal projector from Rp×Rk onto Rp. Under UR,θ, the distribution
π(UR,θ) of this projector has a density with respect to the Lebesgue measure on Rp given

by x → Cp,k
R

(
R2 − ‖x− θ‖2

) k
2
−1

1BR,θ
(x) where Cp,k

R =
Γ( p+k

2 )R2−p−k

Γ( k
2 )πp/2

and 1BR,θ
is the

indicator function of the ball BR,θ =
{
x ∈ Rp/‖x− θ‖ ≤ R

}
of radius R centered at θ in

Rp.
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According to the above, as a spherically symmetric distribution on Rp around θ, the
radius of π(UR,θ) has density

r → σpC
p,k
R

(
R2 − r2

) k
2
−1

1]0,R[(r)r
p−1 =

2R2−p−k

B
(

p
2
, k

2

)rp−1
(
R2 − r2

) k
2
−1

1]0,R[(r).

We use repeatedly the fact that any such projection onto a space of dimension greater
than 0 and less than p + k is spherically symmetric with a density. Then we also often
make use of its radial density.

Lemma A.2 For every twice weakly differentiable function g(Rp → Rp) and for every
function h(R+ → R),

ER,θ

[
h(||U ||2)(X − θ)tg(X)

]
= ER,θ

[
H(||U ||2)
(||U ||2)k

2
−1

divg(X)

]
. (A.5)

where H is the indefinite integral, vanishing at 0, of the function t→ 1
2
h(t)t

k
2
−1.

PROOF We have

ER,θ

[
h(||U ||2)(X − θ)tg(X)

]
= Cp,k

R

∫
BR,θ

h(R2−‖x−θ‖2)(x−θ)tg(x)
(
R2−‖x−θ‖2

) k
2
−1
dx

= Cp,k
R

∫
BR,θ

(∇H(R2 − ‖x− θ‖2))tg(x)dx

since

∇H(R2 − ‖x− θ‖2) = −2H ′(R2 − ‖x− θ‖2)(x− θ)

= h(R2 − ‖x− θ‖2)
(
R2 − ‖x− θ‖2

) k
2
−1

(x− θ) .

Then, by divergence formula,

ER,θ

[
h(||U ||2)(X − θ)tg(X)

]
= Cp,k

R

∫
BR,θ

div
(
H(R2 − ‖x− θ‖2)g(x)

)
dx

− Cp,k
R

∫
BR,θ

H(R2 − ‖x− θ‖2)divg(x)dx

Now, if σR,θ denotes the area measure on the sphere SR,θ, the divergence theorem insures
that the first integral equals

Cp,k
R

∫
SR,θ

(H(R2 − ‖x− θ‖2)g(x))t x− θ

‖x− θ‖σR,θ(dx)

and is null since, for x ∈ SR,θ, R2 − ‖x − θ‖2 = 0 and H(0) = 0. Hence, in terms of
expectation, we have
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ER,θ

[
h(||U ||2)(X − θ)tg(X)

]
= Cp,k

R

∫
BR,θ

H(R2 − ‖x− θ‖2)(
R2 − ‖x− θ‖2

) k
2 − 1

divg(x)
(
R2 − ‖x− θ‖2

) k
2
−1
dx

= ER,θ

[
H(||U ||2)
(||U ||2) k

2
−1

divg(X)

]
which is the desired result.

Corollary A.1 For every twice weakly differentiable function γ(Rp → R+) and for every
integer q,

ER,θ

[||U ||q ||X − θ||2 γ(X)
]

=
p

k + q
ER,θ

[||U ||q+2 γ(X)
]

+
1

(k + q)(k + q + 2)
ER,θ

[||U ||q+4 4 γ(X)
]
.

PROOF Take h(t) = tq/2 and g(x) = γ(x) (x− θ) and apply Lemma A.2 twice.
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