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1 Introduction

In statistics and data analysis, the data often take the form of a rectangular
table, that is an n by d data matrix X = (xij) defined on two sets I and
J , sometimes referred to as two-way, two-mode data. For instance, I may
be a set of cases (objects, persons), J may be a set of quantitative variables
and the data matrix then collect the values taken by all the variables for
each object. The sets I and J may be two categorical variables, the rows
and columns then correspond to different categories of the two variables and
the data matrix, which displays the frequency distribution of the variables,
is the contingency table. The sets I and J may also be any two sets with a
data matrix defining a binary relation on I × J .

Given such a data matrix, the objective of data analysis can be viewed
as the simultaneously analysis of the two sets I and J to identify underlying
structures that may exist between these two sets. Different approaches such
that exploratory analysis (graphical representation or numerical summary)
or dimension reduction have been used. Principal component analysis and
correspondence analysis are examples of such methods. This last method
(Benzecri, 1973) is one of the best known methods that performs simultane-
ously analysis on both sets I and J . The table data must be a contingency
table or at least have similar properties. The properties of this approach,
especially transition formulas allow exchange the results of the tests on the
sets I and J . These types of transitional help to define a set of relations
of type barycentric justifying a simultaneous representation of two sets I
and J . This representation allows to visualize simultaneously the proximity
between the elements of I, the elements of J and the trends between I and J
elements. Let us quote finally the methods of unfolding of Coombs (1950).
The objective of these methods is to preferably represent a table on a line
or a plan. The two sets are thus visualized simultaneously. Each individual
is represented by an ideal point such as the relation of order between the
variables defined by the distances in the ideal point in the various variables
is closest to the order given in the table preferably initial.

Other methods relates to direct processing of the data matrix. For in-
stance, seriation methods amounts to finding a permutation of rows asso-
ciated with a permutation of columns leading to a reshaped data matrix
with a maximum density of high cell values along the diagonal in addition
to low value areas in the upper and lower parts. Such approaches have
been used, for instance, in archaelogy, in phytosociology, in geography and
in production management. Caraux (1984) proposed a criterion based upon
an objective function with quadratic costs and Bertin (1980) proposed a
manual heuristics based on visual densification. Factorial methods such as
Benzecri’s correspondence analysis (Benzecri, 1973) can also be used. When
correspondence analysis gives rise to a U-shape effect (“Guttman effect”) on
the first two axes of the factorial representation, there exists a latent order
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within the rows and the columns leading to diagonal band reshaping which
corresponds to the order of the projections along the first axis of the rows
and of the columns.

This survey is devoted to another family of methods leading a simulta-
neous analysis of two sets by using the notion of clustering. With a two-way
two-mode data set, clustering algorithms are often applied to just one mode
of the data matrix, which can be done in a hierarchical or non-hierarchical
way. Among the non-hierarchical methods, k-means clustering (Hartigan,
1975a) is one of the most popular methods and has the advantage of a loss
function being optimized. Contrary to this approach, there is a relatively
new form of clustering trying to analyze the two sets simultaneously. These
methods, named direct clustering, cross-clustering, simultaneous clustering,
co-clustering, bi-clustering, two-way clustering, two-mode clustering or two-
side clustering, has grown considerably in recent times.

A large number of such algorithms has been been proposed to date. One
of the earliest and most cited biclustering formulation, known as block clus-
tering, was proposed by Hartigan (1972, 1975b). He seeks to organize the
data table using structures that may be, for example, defined from classifi-
cations on each of the two sets. This kind of methods are sometimes known
as direct clustering. Older works may be cited. For instance, this problem
was first described formally by Good (1965) which proposed a technique for
simultaneous clustering of objects and variables. Fisher (1969) posed the
problem of the simultaneous search for clustering on the row and column
dimensions of a data matrix in a metric way. He defined a criterion to opti-
mize, but offers no method to solve this problem. Tryon and Bailey (1970)
first clusters variables using the correlation matrix and then, using a distance
measure across the clusters of variables, clusters the cases. Dubin and Cham-
poux (1970) proposed a method that combines the variables into types, and
associates each individual to the types of variables forming a classification
of individuals. More often, the authors discuss the classification of objects
describing at length the choice of a measure of similarity and merely mention
the possibility of a classification of variables without dealing on how to get
there. Anderberg (1973) identified among the list of problems of classifica-
tion the choice between I and J of all to classify. He considers as reasonable
to classify variables as individuals. He even suggests an iterative approach
in which the classification is done alternately on individuals and the vari-
ables until the classifications on individuals and the variables are mutually
“ harmonious”and believes that such research offers simultaneous “ consid-
erable potential to increase the effectiveness of automatic classification”. In
the case of contingency table and using as measure of information the χ2

of contingency, Govaert (1977) developed the Croki2 algorithm to simulta-
neous search for partitions of each set minimizing the loss of information
due to the regrouping in classes of the two sets. Extending this approach
to binary, continuous and categorical data, he proposed (Govaert, 1983) the
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Crobin, Croeuc and Cromul algorithms. Toledano and Brousse (1977) posed
a similar problem: simultaneously build groups of individuals and groups
of variables homogeneous between them and different ones compared to the
others. Their objective is the search for two hierarchies checking this prop-
erty. For this, they proposed an algorithm, called double aggregation which
seeks with each iteration the best couple of lines or columns to be incorpo-
rated. Bock (1979) showed the interest of the simultaneous classification and
gave several examples of problems for which a good solution is provided by
a simultaneous classification.

Since that time this area has grown considerably and particularly in text
mining and bioinformatics (Cheng and Church, 2000). An extensive overview
of two-mode clustering methods can be found in (van Mechelen et al., 2004)
and, in biological data analysis context, in (Madeira and Oliveira, 2004) and
Prelic et al. (2006).

Section 2 is devoted to different types of data and applications that can
be processed by biclustering. Section 3 summarizes the different approaches
used in this area and Section 4 is dedicated to the model-based biclustering
methods. The main software biclustering are listed in a section 5. A final
section concludes this report.
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2 Data and applications

2.1 Different types of data

In this survey, the data will always take the form of a rectangular table, that
is an n by d data matrix X = (xij) defined on two sets I and J . This type of
data, is sometimes referred to as two-way, two-mode data. Each element xij

corresponds to a value representing the relation between row i and column
j.

2.1.1 Object × variable data

In the most common situation, I corresponds to a set of n objects, each
object being described by a set J of d variables. This type of data can be
viewed as a sample of size n issued from a random variable of dimension d.
Different type of variables can be used:

• Quantitative variables: the value taken by a quantitative variable are
real numbers.

• Categorical variables: each of these variables comprises a set of discrete
states or categories such that each object belongs to one and only one
state.

• Binary variables: a particular case of categorical variable where there
are only two states occurs frequently and merits separate consideration.
Such two-state variables are considered as binary variables.

In this case, most authors distinguish two types of analysis: Tryon and Bailey
(1970) speak of “0-Analysis” for the study of objects and “V-Analysis” for the
study variables. According to them, the earliest works relate to the analysis
of objects and this is the classification (taxonomy) and the first works on
the analysis of the variables are from Pearson and Spearman and this is the
factorial analysis. In other domains, these two types of analysis are called
“P-technique” ant “Q-technique”.

In this type of data, both sets show a strong asymmetry: the first corre-
sponds to a sample consisting of n statistical units measured by d variables.
There are other situations where the two sets play a similar role and can be
interchanged. The most common example of this type of data corresponds
to a contingency table.

2.1.2 Contingency table

There are many situations where one try to study the association between
two categorical variables. In this case, the best way to do is to represent the
data as a two-way contingency table (also referred to as cross-tabulation)
which displays the frequency distribution of all the combinations of categories
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of the two variables in a matrix format. Then, in this type of data matrix,
the sets I and J are the categories of two categorical variables. A two-way
contingency table is a way to summarize the two variables. We can remark
that this definition can be easily extended to more categorical variables.

In this classical situation, the contingency table is computed starting
from a sample of objects measured by the two categorical variables. There
also exist situations where the observations are directly pairs (i, j) ∈ I × J ,
where I and J are any sets (and not necessarily categorical variables) which
lead to similar data, often called dyadic data or co-ocurrence data (COD).
In this situation, the size of the sets I and J can be large and can lead to
data sparseness.

This definition can also be extended to tables where every entry expresses
a quantity of the same matter in such a way that all of the entries an be
meaningfully summed up to a number to a number expressing the total
amount of the matter in the data. Example of such data are trade tables
showing the money transferred from i to j during a specified period.

2.1.3 Binary data

We find in many situations data matrices whose elements can take only two
distinct values (yes/no, true/false, present/absent, agree/disagree,. . . ). The
data are then called binary data. This is what happens to object × variable
data when all the variables are binary. Binary data can also be obtained
as contingency tables where one retains only the presence or absence value.
Such binary matrices, are found typically in ecology, whose one/zero entries
respectively indicate possession/non-possession of a number of attributes
(columns) by a sample of individuals (rows). In this situation, as for contin-
gency data, the two sets I and J are treated symmetrically. In the following,
the values of binary will be coded 0 or 1.

2.1.4 Continuous data

The sets of objects and variables are not comparable. We encounter the
same problem with principal component analysis where the objects and the
variables are not treated in a symmetrical way which is not the case of
correspondence analysis which treats the rows and the columns of a co-
occurrence matrix in the same way.

2.2 Data representations

Different representations can be associated to the data described in the pre-
vious section.

Geometrical representation For the object × quantitative variable data,
a classical geometrical representation consists of regarding this data as

8



n points in d dimensions. In a dual way, the second representation,
and less familiar, geometrical representation consists of regarding the
data as d points in n dimensions. The classical methods like princi-
pal component analysis and k-means algorithm used extensively such
representations. Similar geometrical representations can be used with
contingency table. Correspondence analysis (Benzecri, 1973) are based
on these representations.

Bipartite graph In all situations, it is possible to associate to the data
matrix a bipartite graph whose vertices are the elements of I ∪ J . For
object×variables data and contingency data, the edges of the graph
are the set of pairs {(i, j), i ∈ I, j ∈ J} and they are weighted by
corresponding entries xij in the data matrix. For binary data, the edges
of the graph are the set of pairs (i, j), i ∈ I, j ∈ J xij = 1. In these
situations, the adjacency matrix of the graph is the matrix [0x;x′O]

2.3 Applications

Text and Web mining In information retrieval systems, the model com-
monly used to represent the data is the bag-of-word or vector space
model (Salton and McGill, 1983). A set of words is chosen from the
set of all words in all documents. Each document is a vector in the
feature space formed by this words. The vector entries can be frequen-
cies of some other measures. Thus, the entire document collection may
be represented by a word-by-document matrix whose rows correspond
to words and column to documents. Generally, each document con-
tains only a small number of words and hence, the data matrix is very
sparse. Since the data dimension may be huge, a lower dimensional
representation is imperative for efficient manipulation and biclustering
is a reference tool to summarize the data.

Bioinformatics Gene expression data (Tibshirani et al., 1999) is defined
by a large data matrix illustrating the expression levels of genes (rows
of the matrix) under different samples such a tissues or experimen-
tal conditions (columns of the matrix). In this situation, the aim is
to identify subsets of gene whose expression levels exhibit a coherent
pattern under a subset of conditions.

Jagalur et al. (2007) use model-based block clustering to analyze a ma-
trix of anatomy-by-gene expression level where each column correspond
to the anatomical structures and rows correspond to genes.

Marketing The objective of recommender systems is to predict individual
choices and preferences based on observed preference behavior. Collab-
orative filtering (Goldberg et al., 1992; Hofmann and Puzicha, 1999) is
the method and process used to match data of one user with data for
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similar users, based on purchase and browsing patterns. Collaborative
filtering allows merchants to provide customers with future purchase
recommendations. In this situation, biclustering can be a solution. For
instance, for a recommending system in movie domain, because data
are always sparse, much more accurate predictions can be made by
grouping people into clusters with similar movies and grouping movies
into clusters which tend to be liked by the same people.

Ecology Typically, in this domain the data take often the form of contin-
gency data defined by the cover-abundance scores of a set of species
in a set of sample units (quadrat, lake, county). Quite often, retaining
only the information of presence or absence, the data take the form of
a binary data (Podani and Feoli, 1991). It can be also a quantitative
data. Bock (1979) cites an agricultural research institute that focuses
on the performance of a set of varieties of fruits in different regions
where these varieties are planted. The yields calculated for each vari-
ety and each region define a quantitative data. In all these situations,
the biclustering allows to reduce the size of the data without losing too
much information.

Group technology Group technology is a approach which has been widely
used in many industries, including the design of job-shops and flexible
manufacturing systems. Group technology is also very important for
designing cellular manufacturing systems. In this situation, I is a set
of n parts, J a set of d machines and xij is the processing time of part
i using the jth machine. Cellular manufacturing involves processing
a collection of similar parts (part families) on a dedicated cluster (or
cell) of machines or manufacturing processes. This problem can be
addressed by biclustering.

Archeology Leredde and Perin (1980) worked on a set of merovingian
buckle-plates for which the presence or absence of a selection of crite-
ria manufacturing techniques, shape and decoration has been observed.
The problem was to structure the data by a series of permutations of
rows and columns to show links between criteria and plates. The ob-
jective was to establish a typology of plates and criteria (biclustering
problem) as well as highlight a temporal evolution in manufacturing
techniques (seriation problem).

Computer science Schroeder (1977a,b, 1983) has used the Croki2 algo-
rithm ((Govaert, 1977) to statistical approach to the study of program
behavior via reference string analysis.
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3 Different approaches

3.1 Definition of biclustering

Clustering can be defined as the process of organizing a set I of objects into
groups whose members are similar in some way. A cluster is therefore a
collection of objects which are “similar” between them and are “dissimilar”
to the objects belonging to other clusters. More formally, the objective of
clustering is to find a set Z = {Z1, . . . , Zg} where each Zk, denoted cluster,
is a subset of I. Different types of clustering are used. For example, Z can
be a partition of I or a hierarchy or a set of overlapping clusters.

Extending this definition, biclustering can be defined as the process of
organizing data matrix defined on two sets I and J into submatrices whose
members are similar in some way. More formally, the objective of bicluster-
ing is to find a set B = {B1, . . . , Bb)} where each Bk = (Zk,Wk), denoted
bicluster or block, is the cartesian product of a subset Zk of I and a subset
Wk of J . Denoting Z1, . . . , Zg (g ≤ b) all the subsets Zk with no repe-
tition and in a similar way W1, . . . ,Wm (m ≤ b) all the subsets W` with
no repetition, we obtain a clustering ZB = (Z1, . . . , Zg) of I and clustering
WB = (W1, . . . ,Wm) of J . Different types of biclustering can be defined:

• B can be the Cartesian product of a partition Z of I and a partition
W of J (two-mode partitioning); in this case, we have Z = ZB and
W = Wb;

• B can be the Cartesian product of a hierarchy Z of I and a hierarchy
W of J (two-mode hierarchical clustering);

• B can be a partition of I × J ;

• B can be a hierarchy of I × J ;

3.2 Two-mode partitionning

The simplest biclustering approach is to perform clustering of rows and clus-
tering of columns using a partition Z of the set I of rows and a partition W
of the set J of columns.

3.2.1 Introduction

While the goal is often the simultaneous study of two sets, many researchers
have performed two-way clustering by applying algorithms to both sets sep-
arately and independently but with a simultaneous analysis of results. We
can cite some examples of this type of approaches. In an article discussing
the use of data analysis for architectural design Maroy and Peneau (1972)
define their goal as “the study of the correspondences between object classes
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and feature classes.” For this, they perform a classification to obtain a parti-
tion of the objects and a partition of the characteristics. Then they examine
the correspondence between the two classifications with the original table or-
dered according to an order respecting these partitions. We will return later
to this concept of ordered array. The parallel use of correspondence analysis
also allows them to study the links between the two classifications. Lerman
and Leredde (1977) follow the same approach in an application on the char-
acterization of file systems provided by different computer manufacturers. A
partitioning method around nuclei (pôle d’attraction ) is used to classify the
two sets. The intersection of the two partitions obtained is then made to
allow the reading and interpretation of results. In this study, again, the cor-
respondence analysis is used in conjunction with the classification method.
Tibshirani et al. (1999) illustrate several methods for two-way visualization
of a reordered data matrix based on separately clustering genes and samples
using two-way average linkage hierarchical clustering and two-way k-means
clustering. We can fin similar approach for contingency data in Ciampi et al.
(2005).

A more integrated approach is to classify one of the first sets and then,
taking into account this classification, classifying the latter. Using the infor-
mation bottleneck method introduced by Tishby et al. (1999) for finding the
best tradeoff between accuracy and complexity (compression) when summa-
rizing (e.g. clustering) a random variable X, Slonim et al. (2000) propose a
two-stage clustering procedure for co-ocurrence data: the first stage uses a
distribution clustering algorithm to obtain row clusters; in the second stage,
these row clusters replace the original rows and a similar procedure is used
to obtain column clusters.

But he most interesting situation consists of seeking both partitions si-
multaneously. As for the partitionning clustering situation, the most fre-
quent approach consists to define a clustering criterion and then, to find an
algorithm optimizing this criterion.

3.2.2 Clustering criteria

Z being a partition of the set I and W a partition of the set J , the problem
is to find the couple (Z,W ) optimizing F (Z,W ), F being a function which
expresses the deviation existing between the couple (Z,W ) and the initial
table. The form of the criteria depends on the data.

Quantitative data When the data is a quantitative object×variable data,
the most frequent criterion Govaert (1983, 1995) used is the least squares
criterion which can be written

F (Z,W ) =
∑
k,`

∑
i∈Zk,j∈W`

(Xij − xk`)2 =
∑

i,j,k,`

zikwj`(Xij − xk`)2. (1)
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Here, xk` is the mean of the submatrix defined by the clusters k and `:

xk` =

∑
i,j|zik=1,wj`=1Xij

zkw`

where zk =
∑

i zik and w` =
∑

j wj` are the cardinals of the clusters k and
`.

Adding a matrix A = (ak`) where ak` is a value associated with each
couple of classes k, `, an extended version of this criterion can be defined in
the following way

F (Z,W,A) =
∑

i,j,k,`

zikwj`(Xij − ak`)2 (2)

Two remarks can be made:

• For fixed partition Z and W , the optimal values ak` are the means
xk` and then, the optimal partitions for the two criteria are the same
partitions;

• The matrix A, which has the same form as the initial data matrix X
(real values), can be viewed as a summary of this matrix.

Bock (1979) extended this criterion and developed two variants: a no-
interaction model

ak` = α+ βk + γ`

and an interaction model

ak` = α+ βk + γ` + δk`.

In the first case, it is easy to show that the problem breaks up into two
independent problems of search for partitions on each unit. The usual pro-
cedures of search for partitions can then be used. The optimal partition pair
may be found by applying the one-way sum of squares clustering criterion
separately to the rows and the columns. Thus the usual k-means procedure
can be used. Introducing the values

Yij = Xij −Xi. −X .j +X ..,

the second situation is equivalent to the criterion (1) with new values yij .

Contingency data For this type of data, the most common criteria are
usually based on the concept of information measure such as the Pearson
chi-square contingency or the mutual information.
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If we note s =
∑

i,j Xij the sum of the contingency data, fij = Xij

s
the relative frequencies, fi. =

∑
j∈J fij and f.j =

∑
i∈I fij the marginal

frequencies, the chi-square can be written

χ2(I, J) = s
∑
i∈I

∑
j∈J

(fij − fi.f.j)2

fi.f.j
.

This measure, represents the deviation between the theoretical frequencies
fi.f.j , that we would have if I and J were independent, and the observed
frequencies fij , usually provides statistical evidence of a significant associ-
ation, or dependence between rows columns of the table. If I and J are
independent the χ2 will be zero and if there is a strong relationship between
I and J , the χ2 will be high. So, a significant chi-square indicates a depar-
ture from row or column homogeneity and can be used as a measure of the
information brought by a contingency table. Various methods (Goodman,
1985) have been proposed for investigating this association. Some of them
are graphical approaches and the best known is correspondence analysis.

Given a couple of partitions (Z,W ), a new contingency data A = (ak`)
can be defined by regrouping the rows and columns according the partitions

ak` =
∑
i∈Zk

∑
j∈W`

Xij ∀k = 1, . . . , g and ∀` = 1, . . . ,m

and it can be shown that the chi-square χ2(Z,W ) associated to this new
contingency table A verify

χ2(I, J) > χ2(Z,W ).

Then, regrouping the elements of each cluster leads to a loss of the infor-
mation and a natural objective will be to search for the partitions which
minimize this lost. This leads to the maximization of the criterion

F (Z,W ) = χ2(Z,W ). (3)

A similar development can be mase starting from the mutual information,
also called Goodman RxC association,

G(I, J) =
∑
i,j

fij ln
fij

fi.f.j
.

The two criteria χ2(Z,W ) and G(Z,W ) are very closed and gives similar
results.

Binary data In this situation, a natural choice is to search for homoge-
neous bloc Bk`, i.e. blocks with a majority of one or a majority of 0. If
we note A = (ak`) the binary binary matrix of size (g,m) where ak` is the
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modal value of the block Bk`, the objective will be to minimize the following
criterion

F (Z,W ) =
∑

i,j,k,`

zikwj`|Xij − ak`|. (4)

This is a direct extension of the well-known maximal predictive classification
criterion proposed by Gower (1974).

3.2.3 Algorithms

The optimization of the previous criteria is a a NP-hard problem and heuris-
tic algorithms must be used. Different approaches have been proposed.

Alternated optimization algorithms are the most frequent approach: for
instantance, for the criteria (1), (3) and (4), Govaert (1977, 1983, 1995)
has developed tree algorithms Croeuc, croki2 and Crobin which alternates
between row and column partitioning until the criterion reaches a local op-
timum. Bock (1979) and Dhillon et al. (2003) proposed respectively for
quantitative data and contingency data similar algorithms.

Many other algorithms have been proposed: For instance, sequential al-
gorithm (Podani and Feoli, 1991), genetic algorithm (Hansohm, 2000), sim-
ulated annealing (Bryan et al., 2005), tabu search (van Rosmalen et al.,
2009),. . .

Puolamäki et al. (2008) and Tibshirani et al. (1999) compared these
approaches with the use of classical clustering algorithms applied separately
on the two sets.

3.3 Two-mode hierarchical clustering

The two-mode partitionning approach that we have seen can be extended
to hierarchical clustering and, as for partitions, the process can be done
separately or simultaneously.

3.3.1 Separate clustering

It was in a study on joint use of classification and analysis of correspondences
that Jambu (1976) research links between the two hierarchical classifications
obtained from the two sets I and J . In this example on data showing a
time budget, I represents a set of population types and J is a set of types
of activities undertaken by the population I. The simultaneous analysis is
made on the two hierarchical models using the notion of contribution. In
particular, the contributions of elements of I classes built on J and each
element of J classes built on I are defined. Greenacre (1988) proposed the
same approach and provide a simple graphical procedure which is useful
in interpreting a significant chi-square statistic of a contingency table. In a
similar way, Camiz and Denimal (1998) analyze a two-way contingency table
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cross-classification based on two hierarchies obtained by classical approach
(ward method) on each set I and J .

3.3.2 Simultaneous clustering

Toledano and Brousse (1977), Corsten and Denis (1990), Eckes and Or-
lik (1993) proposed two-way hierarchical clustering. Toledano and Brousse
(1977) posed a similar problem: simultaneously build groups of individuals
and groups of variables homogeneous between them and different ones com-
pared to the others. Their objective is the search for two hierarchies checking
this property. For this, they proposed an algorithm, called double aggrega-
tion which seeks with each iteration the best couple of lines or columns to
be incorporated.

3.4 Direct clustering, block clustering

In the earliest and most cited biclustering formulation, known as direct or
block clustering, Hartigan (1972) defines three types of biclustering which,
using the notation defined in section 3.1, can be written

• Three tree structure: B, ZB and WB are hierarchies; I and J ;

• Partitioned response: B are hierarchy and ZB and WB are partitions;

• Three partitions : B, ZB and WB are partitions (it is the two-mode
partitionning).

Using a stepwise divisive method, Hartigan develops an algorithm minimiz-
ing the criterion (1). Tibshirani et al. (1999) have added a backward pruning
and devised a permutation-based method for deciding on the optimal num-
ber of blocks. Duffy and Quiroz (1991) proposed another permutation-based
algorithm for the same type of structures such that this approach can be ex-
tend to a wide variety of data, including matrices of categorical data. Eckes
and Orlik (1993) have developed an hierarchical agglomerative algorithm to
obtain a hierarchy of blocks.

3.5 Biclustering

In this more general situation, the problem is to identify a set of biclusters
Bk = (Zk,Wk) such that each bicluster Bk, which is a submatrix, satisfies
some specific characteristics of homogeneity with no other condition and, for
instance, biclusters can overlap. Note that a submatrix is considered as a bi-
cluster if it presents a particular pattern. There is no definition of what these
patterns are. The choice of considering a submatrix as a bicluster, is sub-
jective and depends on the context. However there are some basic patterns
that can be used to identify a bicluster. They are called constant, additive
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and multiplicative models. In constant models, all values in a bicluster are
equal. In additive and multiplicative models, there is an additive and multi-
plicative factor between rows and columns respectively. Biclusters can also
be identified by a mixture of these three models. Biclusters can overlap on
the rows and/or columns, or present a tree or checkerboard structure. This
diversity in the nature of biclusters accounts for the fact that no biclustering
algorithm can identify all types of biclusters.

Several biclustering algorithms have been developed and applied to mi-
croarray analysis (Busygin et al., 2008). A good survey of biclustering
methods for biological data analysis has been published by (Madeira and
Oliveira, 2004), they enumerated more than 15 used in this context. Cheng
and Church (2000) were the first to propose an algorithm for this task. They
considered that biclusters follow an additive model and use the mean squared
residue (MSR) to measure the coherence of the genes and conditions in a bi-
cluster. The MSR takes this form

S(Zk,Wk) =
1

zkwk

∑
i∈Zk,j∈Wk

(Xij − xi. − x.j + x..)2

where

ai. =
1
zk

∑
i∈Zk

Xij , a.j =
1
wk

∑
j∈Wk

Xij , a.. =
1

zkwk

∑
i∈Zk,j∈Wk

Xij ,

zk and wk are the size of clusters Zk and Wk. This algorithm identifies
biclusters one by one. A submatrix Bk is a δ-bicluster if S(Zk,Wk) ≤ δ
for some δ > 0. Applied to yeast cell cycle data, Cheng and Church (2000)
identified several biologically relevant biclusters. However the setting of a
threshold δ requires some prior knowledge which depends on the dataset (?).

Note that in such a situation, no criterion can be defined and this ap-
proach has lead to many heuristic: (Oyanagi et al., 2001) (algorithm ping-
pong), (Ihmels et al., 2002, 2004; Ihmels and Bergmann, 2004), (Ben-Dor
et al., 2003), (Bergmann et al., 2003), (Tanay et al., 2004), (Tchagang and
Tewfik, 2006). Showing a connection between spectral partition and crossing
minimization, Ahmad and Khokhar (2007) developed an efficient biclustering
clustering.

Furthermore, Lazzeroni and Owen (2002) have proposed the popular
plaid model. They assume that biclusters are organized in layers and follow a
given statistical model incorporating additive two way ANOVA models. The
search approach is iterative: Once K−1 layers (biclusters) have been identi-
fied, the Kth bicluster that minimizes a merit function depending on all lay-
ers is selected. They also applied their method to yeast data and found that
genes in same biclusters share biological functions. Kluger et al. (2003) used
a spectral approach for biclustering assuming that the data matrix contains a
checkerboard structure after normalization. This structure is identified by a
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singular value decomposition. They applied their method to Lymphoma and
Leukemia datasets which contained different subtypes of cancer. On both
datasets, conditions of the same subtype have been grouped together into the
same biclusters. Tanay et al. (2002) have developed SAMBA, an approach
based on the graph theory coupled with statistical modeling of the data.
SAMBA, applied to a lymphoma dataset, produces biclusters representing
new concrete biological associations. Cheng et al. (2008) have proposed the
pCluster method that has the advantage to identify both additive and mul-
tiplicative biclusters in presence of overlap. They validated their method
on yeast cell-cycle dataset using Gene Ontology annotations. Prelic et al.
(2006) made a comparative study of different biclustering methods for gene
expression. They used a very simple divide and conquer the Bimax algo-
rithm as a reference to investigate the usefulness of different biclustering
algorithms. They concluded that Bimax produces results similar to those of
more complex methods.

The list of cited methods is not exhaustive, other approaches and meth-
ods were proposed. Abdullah and Hussain (2006) developed a graph-drawing-
based biclustering technique based on the crossing minimization paradigm.
Cano et al. (2007) proposed an extension to a possibilistic spectral algo-
rithm, based on fuzzy and spectral clustering, allowing to obtain potentially
overlapping biclusters. Finally, due to the increasing importance of the bi-
clustering analysis of time series gene expression data, some algorithms such
as CCC-Biclustering (Madeira and Oliveira, 2009; Madeira et al., 2010), have
been proposed to address the problem of identification of biclusters with con-
tiguous columns.

3.6 Others structures

3.6.1 Block diagonal structure

In the two-mode partitionning algorithms, constraints can be added to obtain
a structure of diagonal blocks after row and column reorder: The row par-
tition and the columns partition have the same number of clusters (g = m)
and the diagonal biclusters (Zk,Wk) take a form different from the other
biclusters. For instance, in the binary data case, the diagonal biclusters will
be composed primarily of value 1 and other biclusters of 0. The criterion
(4) with the constraint that the matrix A = (ak`) is the identity matrix is
well adapted to this situation and has been used, for instance, by Garcia and
Proth (1986) in a group technology application.

This type of approach is also known as block seriation. The techniques of
seriation, met in various field such as sociology, archeology, botany, zoology,
amount to finding a permutation of rows associated with a permutation of
columns allowing to extract from the data a latent order. Block seriation
corresponds to a particular approach of this problem and in this context,
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Marcotorchino (1991) proposed a solution using linear programming. The
Bond energy algorithm (BEA) (McCormick et al., 1972; Arabie and Hubert,
1990) can also be used to obtain a block diagonal structure.

Various other approaches have been proposed: Pensa et al. (2005) devel-
oped an algorithm leading to a block diagonal structure with the availability
of overlapping. Dhillon (2001), modeling the document collection as a bi-
partite graph between documents and words, he considered the simultaneous
clustering problem as a bipartite graph partitioning problem and obtained
the clusters by using the second left and right singular vectors of the singular
value decomposition of an appropriately scaled word-document matrix.

3.6.2 Different column clustering for each row cluster

Some authors (Pollard and van der Laan, 2002; Rocci and Vichi, 2008) have
proposed to treat the two-mode clustering by first clustering the rows and
then for each row cluster clustering the columns. For instance, in the par-
titionning situation, conditionnaly to each class of row partition, a different
partition of columns is allowed.

3.6.3 Multi-way data

There exist more complex situations where the data take the form of a mul-
tidimensional array instead of a matrix. For example, multiple variables
measured on a set of objects over time or contingency table defined on more
than two categorical data are examples of array-valued or multiway data.

Some of the previous approaches have been extended to this situation.
For instance, Ambroise and Govaert (2002) propose a clustering this multi-
way data along all its dimensions simultaneously using a model based strat-
egy and Peng et al. (2008) propose the subspace clustering algorithm.

4 Co-clustering algorithms for Non-negative data
matrices

Co-clustering methods become popular for dyadic data matrices such as co-
occurrence matrix and binary data, arise frequently in market basket data or
document clustering. The detection of homogeneous blocks in data matrixX
can be reached by partitioning the rows into g clusters and the columns into
m clusters. Different authors treated the co-clustering in a non-negative ma-
trix factorization framework, others are considered to set the co-colustering
in a mixture approach framework.
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4.1 Non-negative matrix factorization

The non-negative matrix factorization (NMF) is useful for many applications
in environment such as text mining, pattern recognition. NMF or two-factor
factorization is one type of matrix factorizations. there are other types and
the well know are semantic indexing (Berry et al., 1995), scaled PCA (Ding
et al., 2002) and generalized SVD (Park and Howland, 2004). Now and
frequently NMF is considered also as a clustering method and contrary to
SVD, for example, it can still a latent semantic direction for each cluster.

Let be the non-negative arbitrary matrix X, in general NMF factorizes
X into 2 arbitrary non-negative matrices R ∈ Rn×g

+ and C ∈ R×d
+ and the

goal is
Min

R≥0,C≥0
||X −RCT ||2

It is proved by (Lee and Seung, 2001) that this error is non increasing under
the iterative following updating rules

Rij = Rij
(XC)ij

(RCTC)ij

Cij = Cij
(XTR)ij

(CRTR)ij
.

The convergence of the iteration is guaranteed but the solution is not unique.
If R and C constitute a solution, then for instance RD and CD−1 will
also form another solution for any positive diagonal matrix D. To have the
uniqueness solution, it suffices to require that Euclidean length of the column
vector in R is one. This normalization leads to

Rij =
Rij√∑

iR
2
ij

Rij = Cij

√∑
i

R2
ij .

Then each element Rij represents the degree to which row belongs to cluster
j, while each element Cij of C indicates to which degree column is associated
with cluster j. There is an equivalence between NMF (with I-divergence)
(Lee and Seung, 2001) and probabilistic Latent Semantic Indexing (PLSI)
(Hofmann, 1999). The two methods optimize the same objective function.
This fundamental fact and both and the L1 normalization NMF ensure that
NMF and PLSI are equivalent (Ding et al., 2008).

4.2 Non-negative Tri-factorization

Let be the non-negative arbitrary matrices R = (Rik)n×g, C = (Cj`)d×m

and A = (Ak`)g×m designating respectively row and column memberships
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and cluster representation which can be viewed as a summary of X. The
problem is to look for these three matrices minimizing the total squared
residue measure

F (R,C,A) = ||X −RACT ||2, (5)

where ||.|| denote Frobenius matrix norm and the superscript T denotes
matrix transposition. The term RACT characterizes the information of X
that can be described by the cluster structures. Then the clustering problem
can be formulated as a matrix approximation problem where the clustering
aim is to minimize the approximation error between the original data X
and the reconstructed matrix based on the cluster structures. It can be
formulated as a unconstrained 3-factor NMF

Min
R≥0,A≥0,C≥0

||X −RACT ||2

The approximation of X can be solved by an iterative alternating least-
squares optimization procedures described below.

4.3 Non-negative block value decomposition: NBVD

As the objective function 5 is convex in R A and C respectively, but not
convex in all of them simultaneously, it is not realistic to expect an algorithm
to find the global minimum. The non-negative block value decomposition
(NBVD) (Long et al., 2005) offers a solution of this problem by iteravely
updating the decomposition using a set of multiplicative updating rules.
This leads to have

Rij = Rij
(XCTAT )ij

(RACCTAT )ij

Aij = Aij
(RTXCT )ij

(RTRACCT )ij

Cij = Cij
(ATRTX)ij

(ATRTRACT )ij

Furthermore, when A is identity matrix, this leads to the cluster model
described by (Li, 2005) and (Xu et al., 2003). Note that the approximation
of X by RACT is not unique and therefore does not offer directly a co-
clustering of data. By assuming that RA is normalized to RAV , the cluster
labels of the columns, are deduced by V −1CT = (Cij); wj` = 1 if ` =
argmax`′=1,...,m Cj`′ and wj` = 0 otherwise. We can also deduce the label
cluster rows by considering XT .
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4.4 Orthognal Non-negative Matrix tri-factorization

As noted before in classical NMF X = RCT there exist large number of
matrices (A,B) such that ABT = I,RA ≥ 0, CB ≥ 0; RA and BC is also
the solution with the same residue. The orthogonality condition allows to
overcome this difficulty, the formulation of the problem becomes

Min
R≥0,C≥0

||X −RCT ||2, s.t RTR = I,

Note in this case, this optimization is equivalent to kmeans clustering. For
co-clustering, it is therefore natural to consider to impose orthogonality on
both R and C simultaneously in NMF.

Min
R≥0,C≥0

||X −RCT ||2, s.t RTR = I, CTC = I

This new formulation implies an equivalence with the simultaneous kmeans
(Ding et al., 2005). However, this double orthogonality is very restrictive
and gives poor approximation. Thus,one can consider

Min
R≥0,A≥0,C≥0

||X −RACT ||2, s.t RTR = I, CTC = I

The unconstrained 3-factor NMF or tri-factorization is equivalent to uncon-
strained 2-factor ((Li and Zha, 2006),(Ding et al., 2006), (Yoo and Choi,
2010)). In their works, the authors studied the benefit of the orthogonal-
ity constraint to obtain rigorous clustering interpretation because the tri-
factorization is interesting only when it cannot be transformed into 2-factor
NMF. In ?, the update rules in this case are the following

Rij = Rij
(XCAT )ij

(RRTXCAT )ij

Aij = Aij
(RTXC)ij

(RTRACTC)ij

Cij = Cij
(XTRA)ij

(CCTXTRA)ij

Recent update rules exploiting true gradients on stiefel manifolds were also
proposed by (Yoo and Choi, 2010)

Rij = Rij
(XCAT )ij

(RACTXRT )ij

Aij = Aij
(RTXC)ij

(RTRACTC)ij

Cij = Cij
(XTRA)ij

(CATRTXC)ij
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4.5 Co-clustering for binary data

By imposing some constraints on R, C and A, we can propose different
criteria. For example, if R and C are two binary classification matrices
noted Z ∈ {0, 1}n×g and W ∈ {0, 1}d×m and A ∈ {0, 1}g×m, we can directly
treat the co-clustering problem by minimizing

||X − ZAW T ||2.

This criterion can be expressed as∑
k,`

∑
i|zik=1

∑
j|wj`=1

|Xij −Ak`|.

and the problem of co-clustering can formulated as the following optimization
problem:

Min
Z,A,W

||X − ZAW T ||2, s.t
∑

k zik = 1,
∑

`wj` = 1

Different algorithms can be used to obtain a solution of this problem. Li
(2005) has proposed an algorithm based on the use of the double kmeans
principle. The principal steps are

1. Start from an initial position (Z(0),W (0), A(0)).

2. Computation of (Z(c+1),W (c+1),a(c+1)) starting from (Z(c),W (c), A(c))

(a) Update A(c+ 1
2
): A(c+ 1

2
)

k` =
∑

i,j

z
(c)
ik w

(c)
j` Xij

z
(c)
k w

(c)
`

(b) Update Z(c+1), each i belongs to the kth cluster minimizing∑
j,`

w
(c)
j` (Xij −A

(c+ 1
2
)

k` )2.

(c) Update W (c+1), each j belongs to the `th cluster minimizing∑
i,k

z
(c)
ik (Xij −A

(c+ 1
2
)

k` )2.

(d) Computation of A(c+1) as in (a) step.

3. Iterate the steps 2 until the convergence.

Obviously the update of A can be performed before the update of W .
This strategy appears more profitable because more faster. It was used by
Govaert (1995) and moreover the author did not work on the original data
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set but on intermediate matrices. In other words, in steps 2(b) and 2(c), for
finding an optimal Zc+1 and W c+1, the dynamic cluster algorithm proposed
by (Diday and coll., 1980) is used to optimize the following criteria

F (Z,A|W ) =
∑

k

∑
i∈zk

∑
`

|u`
i −#w`Ak`|, (6)

where u`
i =

∑
j∈w`

xj
i , and

F (W,A|Z) =
∑

`

∑
j∈w`

∑
k

|Vkj −#zkAk`|, (7)

where Vkj =
∑

i∈zk
Xij (# denotes the cardinality).

The step 2(b) is carried out by the application of the dynamic cluster
algorithm using the n ×m matrix (Ui`), the L1 distance and kernels of the
form (#w1Ak1, . . . ,#wmAkm). Alternatively, the step 2(c) is carried out
by the application of the dynamic cluster algorithm using the g × d matrix
(Vkj), the L1 distance and kernels of the form (#z1A1`, . . . ,#zgAg`). Thus,
at the convergence, we obtain homogeneous blocks of 0 or 1 by reorganizing
rows and columns according to the partitions Z and W . Hence, each block
Xk`, defined by the elements Xij for i ∈ zk and j ∈ w` is characterized by
A`

k which is the highest frequency value.
To help the user to interpret the results, some empirical statistics can be

performed to evaluate the quality of the partition into blocks. For instance,
we can define easily values (1 − εk`), each one of them corresponds to the
proportion of block X`

k values equal to Ak` and measures therefore the degree
of homogeneity of Ak`.

One of the advantages of this kind of clustering methods is to summary
the initial data matrix X in a simpler data matrix (Ak`) having the same
structure. The data matrix (Ak`) is a binary matrix as the initial data
matrix X. Moreover, this version is faster that the version proposed by (Li,
2005) and can process large data sets. Furthermore, the same algorithm with
the χ2 metric can be used to co-clustering the co-occurrence data Govaert
(1995).
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5 Model-based co-clustering

Clustering methods can be roughly divided into two categories. The first is
based on a choice of some distance or distortion measure among the data
points, which presumably reflects some background knowledge about the
data. For most problems, a proper choice of the distance measure can be
the main practical difficulty and through which much of the arbitrariness
of the results can enter. Another class of methods is based on statistical
assumptions on the origin of the data. Such assumptions enable the design
of a statistical model where the model parameters are then estimated based
on the given data and, in this situation, basing cluster analysis on mixture
models has become a classical and powerful approach. (The work of Banfield
and Raftery (1993), Celeux and Govaert (1992, 1993) and McLachlan (1982)
are recent examples among many others of this point of view).

For the co-clustering, even if it is less common and more recent, various
models have been proposed.

For instance, Rooth (1995) proposed a probabilistic model for block clus-
tering of contingency data with a block diagonal structure and proposed an
algorithm which uses formulas similar to the Baum-Welch re-estimation for-
mulas for hidden Markov models. Hartigan (2000) used probabilistic models
to perform block clustering on binary data. Nowicki and Snijders (2001)
proposed a stochastic blockstructures model that builds a mixture model
for stochastic relationships among objects and identifies the latent cluster
via posterior inference. Kemp et al. (2006) proposed an infinite relational
model that discovers stochastic structure in relational data in form of binary
observations. Airoldi et al. (2008) proposed a mixed membership stochastic
blockmodel that relaxes the single-latent-role restriction in stochastic block
structures model. Govaert and Nadif (2003), proposed a latent block model
defined by the following probability density function

f(X,θ) =
∑

(Z,W )∈Z×W

p(Z; θ)p(W ; θ)f(X|Z,W ; θ) (8)

where Z andW denote the sets of all possibles assignments Z of objects and
W of variables. In this model we also assume local independence i.e., the
n × d random variables Xij are assumed to be independent once Z and W
are fixed; we have

f(X|Z,W ; θ) =
∏

i,j,k,`

ϕ(xij ; αk)zikwj`

where ϕ(.;αk`) is a probability density function defined on the real set R.
This model allows to propose algorithms for co-clustering binary and contin-
gency tables by considering respectively Bernoulli and Poisson latent block
models (see for instance; (Govaert and Nadif, 2008) and (Govaert and Nadif,
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2010)). In each cases, variational approach, also named here mean-field ap-
proximation, of EM algorithm has been used to estimate the parameters and
the partitions. Lashkari and Golland (2009) proposed the same generative
model and also used variational approach. They showed that this model have
common modeling assumptions with the Bregman coclustering of Banerjee
et al. (2007). In analyzing continuous data in gene expression context, Ja-
galur et al. (2007) used the latent block model where the conditional distri-
butions knowing the row and the column clusters are Gaussian. They applied
the variational EM and the CEM algorithms. They also proposed a sequen-
tial optimization algorithm of the criterion defined in the CEM approach of
the latent block model. For text categorization, Takamura and Matsumoto
(2002) proposed a greedy algorithm to estimate simultaneously the parame-
ters and the two partitions of the latent block model (classification approach)
and used the Akaike criterion as stopping rule. In the contingency data sit-
uation, Hofmann et al. (1999) presented different clustering models and in
the two-sided clustering situation, the modeling assumptions is equivalent
to the relations obtained by the Poisson latent block model. They proposed
an approximate EM algorithm using the variational approach and in the
classification approach, they used a mutual information criterion.

To predict customer-product preference in market application, Deodhar
and Ghosh (2007) proposed a model-based coclustering model which can be
viewed as an extension of the latent block model taking into account at-
tributes on customers and attributes on products. The proposed algorithm
interleaves clustering of customers and products and construction of predic-
tion models.

Different Bayesian approaches of this kind of models have been recently
proposed. Shan and Banerjee (2008) and Dijk et al. (2009) developed a
Bayesian approach of the latent block model to estimate the parameters. The
first proposed a variational approach while the latter used Gibbs sampling
algorithms. Always on the latent block model, similar works have been
developed by Meeds and Roweis (2007) which showed how these models
can easily take into account missing data and are robust to high rates of
missing data. Starting from a probabilistic model on a contingency table,
Poirier et al. (2008) also used a Bayesian approach to define a clustering
criterion and proposed a greedy two-mode clustering algorithm to optimize
this criterion.

In the collaborative filtering context, (Kleinberg and Sandler, 2008) pro-
posed a mixture model and Ungar and Foster (1998) proposed a statistical
model of collaborative filtering similar to the Bernoulli latent block model.
For estimating the model parameters they have developed different methods
including variations of k-means algorithm and Gibbs sampling.

Shafiei et al. (2006) extended these approaches and proposed a model-
based overlapping coclustering able to work with any regular exponential
family distribution.
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Model-based approaches have also been used to treat the situation where
different column clusterings are used for each row cluster For instance, in the
analysis of gene expression data, Pollard and van der Laan (2002) proposed a
probabilistic model and used the non parametric bootstrap method to assess
the variability of the estimator ; in document and word clustering, Li and
Zha (2006) used mixtures of Poisson distribution to model the multivariate
distribution of the word counts in the document within each class.
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6 Software

6.1 Blocks

The program BLOCKS is a program for stochastic block modeling, based on
Snijders and Nowicki (1997) and Nowicki and Snijders (JASA, 2001). The
method is based on Gibbs sampling, which is one of the many methods of
Markov chain Monte Carlo. Therefore it is rather time-consuming.

This program can be used for undirected as well as directed graphs, but
also for undirected or directed valued graphs (where you could think of 3 to
6 values).

The program is written in Delphi, for use under Windows (1995 and
up). The current version is 1.7 (September 2006). BLOCKS is most easily
executed from the StOCNET environment.

• Marc Flandreau and Clemens Jobst, "The Ties that Divide: A Net-
work Analysis of the International Monetary System, 1890-1910", The
Journal of Economic History, 65 (2005), 977-1007.

• Emmanuel Lazega, Saraï Sapulete, and Lise Mounier, Structural sta-
bility regardless of membership turnover? The added value of block
modelling in the analysis of network evolution. Quality and Quantity,
in press.

6.2 Bicat

BicAT (Bclustering Analysis Toolbox) (Barkow et al., 2006) is a freely avail-
able software written in Java which implements various biclustering methods
as the algorithm of Cheng and Church (2000), the order-preserving subma-
trice algorithm of Ben-Dor et al. (2003) and the xmotifs algorithm of Murali
and Kasif (2003). Functionalities as data handling, data preprocessing, data
vizualization and postprocessng complement the software.

6.3 Biclust

Biclust (Kaiser and Leisch, 2008) is a R package for biclustering. The
main function biclust provides several algorithms to find biclusters in two-
dimensional data: Cheng and Church (2000), spectral biclustering (Kluger
et al., 2003), Plaid Model (Lazzeroni and Owen, 2002; Turner et al., 2005),
Xmotifs (Murali and Kasif, 2003) and Bimax (Prelic et al., 2006). In ad-
dition, the package provides methods for data preprocessing (normalization
and discretisation), visualisation, and validation of bicluster solutions.
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6.4 BiGGEsTS

BiGGEsTS (Madeira and Oliveira, 2009; Madeira et al., 2010) is a free open
source software tool providing an integrated environnement for the bicluster-
ing of times series gene expression data. This software, coded in Java, enables
a user friendly usage of the e-CCC-Biclustering algorithm and its extension
in a graphical environnement together with the possibility to preprocess the
data and postprocesss and anlyse the results using several criteria.

6.5 BiVisu

BiVisu (Cheng et al., 2007) is a software tool for bicluster detection and
visualization.

6.6 Seriation

Seriation (Hahsler et al., 2009) is a R package for seriation.

6.7 Other software

Schepers and Hofmans (2009) propose a Matlab user interface (TwoMP) for
two-mode partitioning on a given data by making use of an optimization
algorithm supplemented by a validated model selection criterion.
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7 Concluding remarks

7.1 Number of clusters

• see for instance the recent works of Schepers et al. (2008)

• Using the direct clustering algorithm of Hartigan (1972) which also pro-
duces hierarchical clustering trees for the rows and columns, Tibshirani
et al. (1999) have added a backward pruning procedure and devised
a permutation based method for deciding on the optimal number of
blocks.

7.2 Initialization

• Spectral initialization procedure of Cho et al. (2004)

7.3 Others

• sparsity,

• empty clusters,

• model selection,

• problem complexity (large-high data),

• reorganization according to SOM and GTM
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